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The structure of the groups SL(4,R) and GL (4,R), their universal covering groups SL(4,R) and
GL(4,R), respectively, and Lie algebras sl(4,R) and gl(4,R), respectively, are studied. The
parabolic subgroups and subalgebras are identified and the cuspidal parabolic subgroups singled
out. The Iwasawa and Bruhat decompositions are given explicitly. All elementary representations
(ER) of SL(4,R) are explicitly given in two equivalent realizations. Using the preceding detailed
structural analysis the SL(4,R) constructions are used for the explicit realization of all ER of

SL(4,R), GL(4,R),and GL(4,R). The results shall be applied (among other things) elsewhere
for the construction of all irreducible representations of the above groups.

I. INTRODUCTION

The groups SL(4,R) and GL(4,R), and their universal
(double) covering groups SL(4,R) and GL(4,R), respec-
tively, are of physical interest mainly because of their possi-
ble applications to gravity.!™ A nice review of these and
other applications, e.g., in hadron physics, is contained in
Ref. 6. (See also a recent proposal for a SL(4,R) classifica-
tion of hadrons.”)

Despite this interest there is no constructive description
of the irreducible representation of these groups and of their
properties. This paper is the first in a program aiming to give
the explicit constructions of the elementary representations
of the above groups and to study their properties and appli-
cations. We recall that the elementary representations of a
semisimple (or reductive) Lie group G are those induced
from the cuspidal parabolic subgroups P = MAN of G, the
induction being from discrete series representations of the
subgroup M (such representations exist by cuspidality),
from arbitrary characters of the Abelian group 4, and triv-
ially from the nilpotent group N (see below for more de-
tails). The elementary representations (ER) are important
since they exhaust all irreducible representations. The exact
statement is (Langlands,® Knapp and Zuckerman®) that ev-
ery admissible irreducible representation of a connected real
semisimple Lie group G is equivalent either to an irreducible
ER of G or to an irreducible component of a reducible ER of
G. The condition for admissibility is purely technical since
there is no known example of nonadmissible irreducible re-
presentations for such groups.

There are few papers that work with the ER of these
groups. (In the mathematical literature the ER are usually
called generalized principal series representations.) In Refs.
10 and 11 the reducibility of the principal series of unitary
representations of SL(n,R), GL(n,R), respectively, was
studied. In Ref. 12 the correspondence between the ER of
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GL(n,R) and GL(n,C) is discussed in another context.
Most relevant for our considerations is the paper of Speh.?
This paper gives the classification of all unitary irreducible
representations of GL(4,R). However, it does not give the
explicit construction of the ER and of the intertwining oper-
ators between them. Such explicit constructions are suitable
for analytic computations needed in the physical applica-
tions, as we know from earlier experience.'* ' For instance,
the kernels of the integral intertwining operators provide (in
the mathematical aspect) the scalar products in the cases of
unitary irreducible representations. In the physical applica-
tions these operators are the Green’s functions for the G-
invariant wave equations or the physical propagators (two-
point functions) in a G-invariant quantum field theory.
They are also useful in the building of G-invariant actions.
In the mathematical physics literature (cf. Refs. 17-19
and references therein), representations of SL(4,R) and of

the connected component of GL(4,R) are usually induced
from the representations of the maximal compact subgroup

SO(4) . Such induced representations are only a small sub-
set of the ER. In Ref. 17 some series of (reducible) unitary

representations of GL(4,R). are given. Reference 18 is
concentrated on the classification only of the unitary repre-
sentations of SL(4,R), which contain each irreducible rep-
resentation of SO(4) at most once. In Ref. 19 some partial
cases of ER are used and (what amounts io) induction from
the Lorentz group SO(3,1) suitably imbedded in SL.(4,R) is
also used. However, the emphasis in this paper is on the
GL (4,R)-covariant extensions of the Dirac equation rather
than the systematic exposition of the representation theory.
We give now a brief outline of our program. This paper
studies the structure of the groups and Lie algebras and gives
the construction of the elementary representations. Subse-
quent papers will deal with construction of the integral and
differential intertwining operators between (partially) equi-
valent representations; identification of the known represen-
tations with some ER (see also the end of this paper); invar-
iant sesquilinear forms on pairs of ER and construction of
the unitary irreducible representations; study of the invar-
iant subspaces of the reducible ER; physical applications as
outlined above as well as to exactly integrable systems, etc.
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Analogous programs have been carried out successfully for
the groups SO(n,1) (see Refs. 14 and 15), Spin(5,1) (see
Ref. 16), and SU(2,2) (see Refs. 20 and 21). Despite some
similarities there are considerable differences. For instance,
the group SL(4,R) has split-rank 3 and is maximally split
while SO(n,1) and Spin(5,1) have split-rank 1 and SU(2,2)
has split-rank 2. This makes the structure analysis and the
representation theory much more difficult, as we shall see.

Our basic mathematical reference isWarner.?* All no-
tions not referred to other sources can be found there or in
Refs. 15, 16, and 21.

The organization of the present paper is as follows: Sec-
tion II is devoted to the study of the Lie algebras of SL(4,R)
and GL(4,R). We introduce notation for the basis of the Lie
algebra g =sl(4,R) and display the three nonconjugate
Cartan subalgebras (they are all noncompact). We make
explicit the well-known isomorphism with the Lie algebra
$0(3,3). Then (Sec. II B) we give the root system of the pair
(g,a) (where a in this case is the most noncompact Cartan
subalgebra), which is isomorphic to the root system of
(a%5%) (g%hC are the complexifications of g and any of the
real Cartan subalgebras, respectively) because g is maximal-
ly split. The Weyl group W (g,a) = W(g%h°) is presented in
Sec. II C. In Sec. II D we study the parabolic subalgebras of
g. Although we know how many they should be and how
they should be found, we do not know them in general. The
identification of the parabolic subalgebras is the main objec-
tive of Sec. II. Then in Sec. II E we introduce some nonpara-
bolic subalgebras suitable for the comparison with SO(4)
and SO(3,1) inductions in literature. In Sec. I F we give the
structure of the Lie algebra ¢° = gl(4,R). This is not done
independently from the g = s1(4,R) case but rather uses the
fact that g¢° =g & 3 (3 is a one-dimensional center).

Section III deals with the structural analyses of

SL(4,R), GL(4,R), and their universal covering groups.
We first study in detail the group G = SL(4,R) and then
give the analogous analyses for the other groups. In Sec.
III A we introduce by explicit parametrization the impor-
tant (for ER) subgroups of G: the maximal compact sub-
group K = SO(4), the Abelian noncompact subgroup
A = exp(a), the nilpotent subgroups N and N, which expon-
entiate the positive and negative root spaces, respectively, in
g with respect to a, the centralizer M of 4 in K, and the
minimal parabolic subgroup P, = MAN. Then we construct
explicitly the other parabolic subgroups P'=M'A'N’
(A’ CAN’' C N,M' D Misthecentralizerof4 'inG) and
prove in Proposition 1 that the only cuspidal parabolic sub-
group is the minimal one. Thus the Pj-induced representa-
tions shall give all elementary representations. In Sec. III B
we introduce the analogs of the above subgroups for
SL(4,R), GL(4,R), and GL(4,R) and prove in Proposi-
tion 2 that for each of these groups the only cuspidal parabol-
ic subgroup is the respective minimal one. In Sec. III C we
give matrix realizations of the elements of the Weyl group
W(g,a), which are needed in the explicit construction of the
ER and of the intertwining operators between them.??

In Sec. IV we consider the Iwasawa”® and the (Gel-
*fand—Naimark?*-) Bruhat?® decompositions of our groups.
The Iwasawa decomposition (Sec. IV A) is more difficult;
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however, we shall only need the Iwasawa decomposition of
the group &, which we give explicitly. In Sec. IV B we con-
struct explicitly the Bruhat decomposition for SL(4,R) in
Propositions 3 and 4 and for GL(4,R) in Proposition 5. In
Sec. IV C we discuss the Haar measure on G and its sub-
groups. We make explicit an important connection between
the Haar measures on K and on N.

Section V is devoted to the explicit construction of the
elementary representations of our groups. We first give the
constructions for SL(4,R) in Secs. V A-V C.InSec. V A the
general picture of the ER with representation space in
C>=(G,C) is introduced. We briefly discuss the lowest
weight module (over g©) structure of the ER (introduced in
general in Ref. 27). In Sec. V B we construct the noncom-
pact picture of the ER. The representation space is com-
prised from functions in C * (N,C) with special asymptotic
properties that are given explicitly. These properties ensure
the C = action of the ER in the noncompact picture (Propo-
sition 6) and its equivalence to the general picture (Proposi-
tion 7). The principal series of unitary representations is
identified. In Sec. V C the infinitesimal generators in the
noncompact picture are given explicitly. The values of the
Casimir operators for the ER are given, the second-order
Casimir being evaluated in two different ways. In Sec. VD
the ER of SL(4,R), GL(4,R), and GL(4,R) are intro-
duced. Due to the detailed structural analysis of the groups
and their Lie algebras we are enabled to use the SL(4,R)
constructions with very few changes the not so obvious of
which are given. In particular, the principal series of unitary
representations are identified in the most general setup,
which is also compared with the literature. For GL(4,R)

and GL(4,R) the first-order Casimir operator connected
with their one-dimensional center is given.

11. STRUCTURE OF THE LIE ALGEBRAS OF SL(4,R) AND
GL(4,R)
A. Realization of SL(4,R) and of its Lie algebra si(4,R)

The group SL(4,R) is defined standardly by
G =SL(4,R) = { geGL(4,R)|detg = 1}. 2.1

The Lie algebra g = sl(4,R) of G is comprised by the
real 4 X 4 traceless matrices X,

TrX=0. (2.2)
The Cartan involution 6,
0X= —'X (2.3)

(‘X is the transpose of X), provides the Cartan decomposi-
tion of g:
g=fep (2.4)

where t is the maximal compact subalgebra of g and p is a
vector subspace of g such that

Xef=0X=X, Xep=60X= —X. (2.5)
Explicitly we have (1.s. stands for linear span)
f=1s{X, =¢;, —¢;, 1<i<j<4}=so(4), (2.6)

where ¢;, i,j = 1,...,4 are the standard matrices with only
one nonzero entry on the ith row and jth column
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() = Sudy» 2.7
p=1s{Y,=¢, +e, I<i<j<4 2,88},  (282)
where

éi=en—ey & =en—ey

&3 =}(e;; —exn + €33 — €44). (2.8b)

Further we list the other important subalgebras of g. Let
a be the subspace of p, which is a maximal Abelian subalge-
bra. The dimension of this algebra is called the split rank of g.
Inourcasedim a = 3, so the split rank of g is equal to its rank
and ¢ is said to be maximally split. It is natural to choose a to
represent the most noncompact Cartan subalgebra §, of g.
For the basis of a we choose €,,8,,2; [ (2.8b) 1, so

ho = a = 1.5.{8,,8,,6,}. 2.9)
The other two nonconjugate Cartan subalgebras of g, which
are also noncompact, can be chosen as

h, =1s.{8, + &, Y5, X3, },

b, =Ls.{&, + &,, X5, X34}

Note that §, (k¥ =0,1,2) has k compact generators.

It is known that g is isomorphic to so(3,3). The expres-
sions for the generators Z .5 (4,B = 1,2,...,6) of 50(3,3) are

Z,=4X3—X5), Z;3=}Xy—Xs,),

(2.10)
(2.11)

Zy=1Xp + X34), Zys=14(X13 + X24), (2.12a)
Zis =4 X1y + X))y Zsg=1(X1; — X)),
Z,=4(8,+8), Z,;s=1(8,—8), Zy=2,

(2.12b)
Zis=3(—-Y;3-Y), Z;=4(— Y.+ Ya3),
Zy=3—Yu+Y3), Zy=4—-Y,—Y3),

(2.12¢)

Zy =4(Y;3+ Y,4),
Indeed

[ZusZcp) =NucZpp + MspZac — MapZsc — MscZaps
where ABCD=12..,6, 9,,=70n="= —74
= — )55 = ~ Ne¢ = 1, and 7,5 = 0 for 4 #B. Note that
the (2.12a) span so(4) =so(3) & so(3),Z,,,a,b=1,2,3,
a<borab=45,6, a <b, spanning the two so(3) subalge-
bras.

Zy = 5( — Y3+ Yyy).

B. Root systems and the iwasawa decomposition

Denote by a* the space of real linear functionals over a.
Define for Aca*, A #0,

g, = {Xeg|[2,.X ] =4(8,)X, a=123}, (2.13a)
A = {Aea* |4 #0, g; #{0}}. (2.13b)
We easily obtain

A={+4,, k=172,.,6}, (2.14a)

and we choose the set A™* of positive roots to be (enumerated
in the order of largeness with this ordering)
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Al(él,éz,és) = (0,2y0)’ A’Z = (1! - 1’ - 1)!

'13= (1, - L1), /14= (L,1,-1),
(2.14b)
AS = (1’191)’ 16= (2,0,0),

/14=A«]+12, A’S=/i'l+j’3’ A6=il+i2+i3.

(The simple roots are A,,4,4;.) The corresponding root
spaces g = g, ;, are spanned by the root vectors E ;*:

+
E; =ey,

(2.15)

E =eyp,
E; ="'E}f.
We define the positive and negative root spaces

+
Elf =ey E; =e;

+
Ef =ey, Eg =eyp;

ﬁzfg,‘*, nsfg;. (2.16)
Of course fi = &n and we can write the standard decomposi-
tion

g=iie®aen (2.17)
Then we note that the map

Ji—E

J(X) =X+460X, Xef, (2.18)
is bijective. So

g=feoaen (2.19)

is the Twasawa decomposition of g (see Ref. 24).

We now turn to the root system of the complexified Lie
algebra g€=¢s1(4,C). Its Cartan subalgebra §° is unique (up
to conjugation) and is the complexification of any of the
Cartan subalgebras , (a =0,1,2) of g. Since sl(4,R) is the
normal real form of si(4,C) (see Ref. 28) we can (and it is
useful to) choose in §€ the same basis as in a and not to use
the standard basis of B, consisting of ey, — e, 144,
(k = 1,2,3). Then of course the root system of (g%,§€) coin-
cides with that of (g,a). The corresponding root spaces g

= g% ,, are complexly spanned by the same root vectors
E £ (2.15). Then we have for the analogs of (2.16) and
(2.17):

(2.20a)
® b @ nC. (2.20b)

C. The Weyl group W(g,a%)
We define for every A, €A™ a vector H, ea® by
B(H,.2,) =A,(8,) (a=123), (2.21)

where B is the Killing form on g with normalization
B(X,Y) = Tr(XY). So we obtain

Hl =éz» Hz = 5(3‘1 _éz) —és,

Hy=}(8,— &) +8&,

(2.22)
H,=H, +H, H;=H,+H,,
H=H,+H,+H,
Note also
Av(Hy) =2, H,=[Ef.EF], k=1,.,6, (2.23)
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which is an equivalent definition [instead of (2.21)]. The
Weyl reflections in a, corresponding to the positive roots, are
standardly defined as

w, () =x = 20 f
A’k (Hk )
=X A, (X)H,, Xea, (2.24)
with the explicit actions on the basis of a given by

W, (8,,€2,8;) = (&), — €3,8;),
w,(84,82,83) = (Hs,H 3 (8, — &),
W, (€,,85,8;) = (Hy,Hs, — 4(8, — &,)),
W (2rnbs) = (Hy — Hp (8, + &), (2:240)
Ws(81,85,83) = (Hy, — Hy, — §(e; + &),
We(8,,65,83) = (—8,,85,83), w,(H,)= —H,.

We note from (2.24),
w: =id, k=1,..,6,
Wy = W)W, = Wl Wy, Ws = W Wi, = W;W,W;,

We = WslWW5 = Wyllsy, W,z = W;lW,. (2.25)

We choose for the generating elements of the Weyl group
W(g,a), w,, w,, and w,, which correspond to the simple
roots. Then we have for the 24 elements of W:

W(g,a) = {id,wk (k = 1,...,6),wlz,w13,w3l,w23,w21,

W123,W231,W213,W312:W1231,W1213:W1312sW2131»
(2.26a)
(2.26b)

When weW(g,a) is expressed as in (2.26), we say that it is
given in a reduced form. The induced action on the roots is
defined as

w3121»w12131sw13121»w131213};

w,-,,-z . in = u),'l w,-z b w"n.

wi, =A; o w,, (2.27a)
from which follows

wiA; =A; — A, (H ) Ay (2.27b)
For the generating elements, (2.27) gives
wt (A1 A dsdadside) = (— ApdadsAadsde),
wf (A1 Ao AsdadsAs) = (g — AxAsdiAeds),  (2.28)

w¥ (/11/12’2'3/{4»15/15) = (/15»/12, - }'3”16’/11J‘4)'

Obviously w}d, = — A, and w} obey relations (2.25).
Finally we note that since sl(4,R) is the normal real

form of sl(4,C), the Weyl group of the complexified pair

W(g®h°) coincides with W(g,a).

D. The parabolic subalgebras of g

We recall the definition of the minimal parabolic subal-

gebra p, (see Ref. 22),
pp=measmn (2.29a)

where m is the centralizer of a in . In our case (as always
when ¢ is maximally split) m is trivial, m = {0}. Thus we
have

Po=a e n (2.29b)
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A standard parabolic subalgebra® of g is any subalgebra
of g containing p,. The number of standard parabolic subal-
gebras is 2’ =8, where / = dim a = 3. One is g itself for
which one can formally write

pg =mg ® ag ® ngy (2.303)
with
m, =p, =g, qa,=n ={0}. (2.30b)

The remaining six are also given in the form (2.29a)
Pop = Mgy @y © My,
(a=0,12, a<b=12,3), (2.31)

where m,, is the centralizer of a,, in g (not in f since m,,
contains noncompact elements) and the a,, are defined as
follows:

ag, = {Xea|w, (X) = — X} (2.32a)
G == 0o, ® g, (a7#0). (2.32b)

The n,, (resp. fi,,) are the negative (resp. positive) root
spaces of the system (g,a,, ). Explicitly we have

(b = 1:2’3)’

am = l.S. éz, a02 == l.S.(él - éz - 2é3),

(2.33)
(103 = l.S.(él bt éz + 263)!

N ] O ¢ 0 0
my, = l.s.{es} 2] l.S. [els(o 01) ’(91 0)] ’

(él - éz) + é3)

(5 o-(5 ol

(2.34a)

my, = Ls.{é, +&,} o Ls. {

Nl'—-

1

my; =1s.{&, +&,} & Ls. [ (8, —&,) — &,

b 26 o

m13 = I.S.{Zél - é3},

[\

m,, = 15.{28, + &,},

m,; = Ls.{é, + &,}, (2.34b)

ey = (1,+03)/2, e,=1(1,~0,)/2,

o, =i, 1ioy). (2.34¢)
It is easy to see that

my, =so(l,1) & sl(2,R), (2.35a)

m,, =so(l,1) (a#0). (2.35b)

(Of course, the so(1,1) and sl(2,R) factors are imbedded
differently in s1(4,R) for different a,b.)

We shall see in Sec. III A that only the minimal parabol-
ic subgroup, corresponding to p,, shall be relevant for the
construction of the elementary representations of
G = SL(4,R). For that reason we shall not carry out to the
end the structure analysis for p,, as for p,: root systems,
restricted Weyl groups W(g,a,, ), etc.
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E. Nonparabolic subalgebras

Usually in the mathematical physics literature (cf. Refs.
17-19 and references therein) representations are induced
from various nonparabolic subalgebras. Most often repre-
sentations are induced from the representations of the maxi-
mal compact subgroup or subalgebra. Often f = so(4) is
interpreted as the Euclidean counterpart of the Lorentz sub-
algebra so(3,1). Our exposition below is trying to incorpo-
rate these approaches into our scheme of structure analysis.
This would help us in subsequent papers to identify the
known representations as some of the elementary represen-
tations.

Let a* be a subalgebra of a that commutes with the Car-
tan subalgebra §* of f. We obtain [cf. (2.11.)]

a*=1s.D, D=1(& +&,),
(2.36)
B =18.(X2,X5,), By =0d" @ B~
We can introduce a restricted root system of g related to
a¥. We define for ue(a*)*, u#0,

g, = {Xeg|[DX ] =pn(D)X}, (2.37)
M*={pue(a)*|u#0, g,#{0}}

={u.pu_}, py (D)= +1, (2.38)
fit=gq, =ls.(E}EfEFEF), (2.39a)
=g, =1s(E[,E{,E;.ES). (2.39b)

We also note that the . , are the restrictions of part of A to
D:

B, =Aflp (k=1456). (2.40)

The restricted Weyl reflection s corresponding to 2, is
defined as

s(D)=D—-2u (D)D= —D, (2.41)

and the corresponding restricted Weyl group is W(g,a*)
= {id,s}.

Another type of nonparabolic induction (see, e.g.,
Mickelsson'*) is from the Lorentz subalgebra so(3,1), itself
imbedded suitably in s1(4,R):

m' = s0(3,1) =1s.{X,, 1<i < j<3, Yy, k=1,2,3}.

(2.42)
Define o to be the subalgebra of a that commutes with the

Cartan subalgebra i’ of m’. We obtain [cf. (2.10) and
(2.36)]

d=a*=1s.D, § =1s5(X5Y4),

(2.43)
h=deb

F. Structure of the Lie algebra of GL(4,R)

The Lie algebra gl(4,R) of GL(4,R) consists of all 4 X 4
real matrices. The structure analysis of gl(4,R) is very easy
after one has done the analysis of s1(4,R) since

g°=gl(4,R) =sl(4,R) o 3,

(2.44)

3= l.s. é4, é4 = 14.

Thus we shall list without comment the analogous notions
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and formulas: Cartan decomposition [cf. (2.4) and (2.8)],

g'=fep, p=posy (2.45)
Cartan subalgebras [cf.(2.9)-(2.11)],
be=b, @3 (a=012); (2.46)

root system [cf. (2.13)-(2.19)] of (g%,a°=Db5) (note that
this is not the standard root system and root vectors),

A={1¢, k=1,.,6}, (2.47)
AC(8,,8,,8,) = A, (8),82,85), AL(8,) =0, (2.48)
gt =e& Eir=Ef, (2.49)
fi*=1, n°=n, (2.50)
g=fiea ®n, 2.51)
g=feden (2.52)

Weyl reflections and Weyl group {cf. (2.24)-(2.28)],
Wi (81,85,83) = Wy (8,,8,,83), (2.53)
We(g'a®) = W(g,a); (2.54)
parabolic subalgebras [cf. (2.29), (2.32), and (2.33) ],

w; (é4) = 64,

p=pos=acen (2.55)
p:b =‘pab ® a=mab ® 0:,, ® nab’ (256)
Ay =0g © 3; 2.57)

and nonparabolic subalgebras [cf. (2.36) and (2.43)],

(") =d" @3 (a)=ad (2.58)

. STRUCTURE OF SL(4,R), SL(4,R), GL(4,R), AND
GL(4,R)
A. Important subgroups of SL(4,R)

We shall most often write the elements of G = SL(4,R)

e=(2 5).

where a, 5,7,0 are 2X2 real matrices constrained by the
condition det g = 1. Additionally for each 2 X 2 matrix a we
shall use the following decomposition [cf. (2.34¢)]:

as

=ae,+ae,+a, 0, +a_o_. (3.1

The maximal compact subgroup X of G is given by
K={geG|g™'="g}

={g=(c; Z) l ‘aa +'yy=1, ‘BB+'66=1,

‘af+ Y6 =0, detg= 1} = SO(4), (3.2)
and its Lie algebra is f. Further we introduce the subgroups
corresponding to the subalgebras q, fi, and n. We introduce
parametrization of a, fi, and n [thus making explicit formu-
las (2.9) and (2.16)]:
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a={sé1+té2+ré3|s,t,re]R}=[diag(s—f——%—,t——r—,—s+L,—t——)],

2

r

2 2

fi={y,Est +y_E;t +x1E +x3E +x, EJ +x_EJ |y, x{x;x", €R}

- [(y+a+ ®
0 y_o_

Z_o_ 0 AL, i 1,
n=[( Y z+a+)’ basx,zi,b,,bz,bie]R].

(Parameters ®' and b’ are primed for convenience, see below.)

Thus we can define

0
T

a7

+04 x
0 y_o_

_ [(1 +y, 0, X
0 1+y o

_ [(1 +Y4+0,
- 0

N=expii= [r'l = exp(y

x(1+y_o_)
1+y_o_
_O_

0
NEexpn={n=exp(zB, s ),zi,b{,bg,b’ieR}
+0 4

(v Eowmy)
M\t +z0) | 142,01

a;t Eeleis+r/2+e2e:tt——r/2;s,t,reR} o (R+)3,

), fc=i"<1—y-a_)],

),J’%’ =xie,+x;6,+x", 0, +Xx"_ 0_] )

3.3)

)‘yi,xi,xé,x; GR]

), X' =%+[y+xi0, +(y.x"_ +x, ydeg+x;y_o_] +%y+y_x;el}

(3.4a)

(3.4b)

(3.5a)

(3.5b)

In (3.4b) and (3.5b) we have introduced the more convenient parameters £ and binstead of £’ and b’ and we shall use them

from now on.
Let M be the centralizer of 4 in X, i.e.,

4
M= {meK |m~'am = a, Yaed} = [m = diag(v;,vp,vsva) v, = £ L IS4 [ v = 1]
i=1

= {mVmYmls|m =diag( — 1,1,1, — 1), m,=diag(1, — 1,1, — 1),

m, = diag(1,1, — 1, — 1); N\,N,,N; = 0,1} = (Z,)°.

Thus M consists of the diagonal elements of K.

Analogously to the Lie algebra considerations
P, = MAN is a minimal parabolic subgroup of G and a stan-
dard parabolic subgroup is any closed subgroup of G contain-
ing P,. We recall the standard construction of the parabolic
subgroups?®: Let ¥ = {w,,w,,w;} be the set of generating
elements of W(g,a). Then to each subset ¥¥ corresponds a
standard parabolic subgroup of G:

Py, = v Pw(w)P, 3.7
wey

where w (w) is some matrix representation of the elements of
W(g,a,) to be given explicitly in Sec. III C. Then we have

Py =P, P, =Pw(w,)P, (a=123),
P,=P,UP,, ab=123 acbh, (3.8)
P, =G=M,, Ay =N, =1{1},

or more explicitly [cf. (2.32)-(2.35) and (3.6)]:
P,=M, A, N,, ab=0,123 acbh, (3.9)
A, =expa, CA, (3.10a)
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3.6)
{ .
N,, =expn,, CN, (3.10b)
M,, = SO(1,1)X((M/m;) ®SL(2,R)), b=123,
(3.10c)
my=mms; m;=mm, m =m,
M, =M xXSO(1,1), Os#a<b, (3.10d)

where G’ & G ” denotes the semidirect product with G’ act-
ing on G ". Note that SO(1,1) and SL(2,R) are differently
imbedded in SL(4,R) for different pairs of indices of a,b [cf.
(2.34) and (2.35)]. The factorization in (3.10c) is needed
since in each case the element m;, is contained also in the
corresponding imbedding of SL(2,R).

Further we shall investigate the cuspidality of the para-
bolic subgroups. A parabolic subgroup P' =M '4’'N' of an
arbitrary semisimple (or reductive) Lie group is said to be
cuspidal iff the subgroup M ' has discrete series representa-
tions. The minimal parabolic subgroup P, is cuspidal for any
group. For the case P’ = Gitis known that SL(4,R) doesnot
have discrete series representations. Indeed recall the Har-
ish-Chandra criterion: a semisimple Lie group G has discrete
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series representations iff rank G =rank K, while for
G =SL(4,R), rank G =3#rank K =2 [K=S0(4)]. In
the six cases P’ = P,,, M, is either isomorphic to SO(1,1)
or contains SO(1,1) as a direct product factor. Since
SO(1,1) does not have discrete series representations [rank
SO(1,1) = 1#rank K (SO(1,1)) =0] neither does M,
have. Thus we have proved the following proposition.

Proposition 1: The only cuspidal parabolic subgroup of
SL(4,R) is the minimal parabolic subgroup P,

Remark: By the Langlands®-Knapp—Zuckerman®
theorem only P, shall be needed to construct the elementary
representations of G. That is why we do not give in so much
detail the explicit parametrization in the case of the other
parabolics.

Further we introduce the subgroup, corresponding to
the nonparabolic subalgebra a* (2.36):

A*=exp(a*)

=[akeG|ak=( |:|1 v IO"l)’ ia'ew}'
a
(3.11)

Later we shall give the exact imbedding of SO(3,1) in
SL(4,R) after we display the Iwasawa decomposition (Sec.
IVA).

B. Important subgroups of SL(4,R), GL(4,R), and
GL(4,R)
We turn now to the universal (double) covering
G = SL(4,R) of SL(4,R). The maximal compact subgroup
K of G is the double covering of X,

K =SU(2)xSU(2) = SO(4). (3.12)

Explicitly the double covering map K — K is given by

SU(2) XSU(2) 3 (u,v) = (k; (u,v))eSO(4), (3.13a)
k; (uv) =ltr(g; ugp™), (3.13b)
where ¢; represent the quaternion units
Uu=1,, q= —io;= —-q7 (j=123), (3.13¢)
through which u,v are also conveniently expressed as
u=1ug, + U, + usq; + Usgs U€R,
(3.13d)

detu=ul+u2 +ut+1u2=1.

The groups 4, N, and N and the nonparabolic 4 * are
simply connected and can be thought of as subgroups of G
also.

The centralizer M of 4 in K is

M= {(uyv) €K |k(u,) 'ak(up) =a, Vaed}

4 ——
= u Mg, (3.14a)
k=1
€= +1
i ={(xa e} (3.14b)
The 16 elements of M may be generated by
mk E(qk; - qk) (k = 1:2’3), (3.140)
ie.,
889 J. Math. Phys., Vol. 27, No. 4, April 1986

M = {(1,1,) 77,78 5,723,783, T 5770 1, TR 705, PR TR,
LM, T, TR M, T, MM,
(7,)%,(m,)>,(m,)> (75)°}.

However, we shall use a more convenient parametrization of
M,

M = {mYmYmYmi|m, = (— 1, — 1,),

(3.144d)

N, =01 (k=1,234)}, (3.14e)
which displays the fact that
M= (2,)°GCZ,=MG&Z, (3.14f)
The double covering of M by M is given by
M;->mi, k=1234,
m$ = diag(e, — €, — €,€), m; = diag( — €,€, — €,€),
(3.14g)
m§ =diag( — €, — €,6,€), m§ =€l,.

Note that m, — m, [cf. (3.6)], m, — 1,.

Analogously to the SL(4,R) case P, = MAN is the min-
imal parabolic subgroup of G. The number of standard para-
bolic subgroups is the same and they are explicitly given as
follows [cf. (3.8) and (3.9)]:

_}; ﬁo \y =@=A_.{\p, Z\y =X’\l’ - {l}, (3.153)
P,=M,A4, N,, ab=0123 a<b,

M, =M XxSO(1,1) =M, &Z, (a#0), (3.15b)
M,, = SO (11)><((M/M ) & SL(2,R)) = M,, &Z,,

M5§M3+l’ 3_=—M3_l9

; M ;
where SL(2,R) is a double (not the infinite universal) cov-
ering of SL(2,R). We shall explain this double covering at
the end of Sec. IV A, after we introduce the Iwasawa decom-
position.

Next we consider the group G = GL(4,R). Analo-
gously to the algebraic discussion in Sec. II F, we note that
K*®=0(4), N°=N, N°=N. Now instead of (3.2a), we
have [cf. (2.44)-(2.46)]

a° = {58, + &, + ré; + gé,|s,t,r.geR}

2

r
—_t—— ,
7+9)

and, instead of (3.3), we have

=[diag(s+—;—+q,t——’—+q,—s+%+q,

(3.16a)

=fr=e(G )

s,t,rg eR] = R* XA.
(3.16b)

Next, instead of (3.6), we have, for the centralizer of A ¢ (or
equivalently 4) in K¢ [cf. (3.6)],
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M= {m=diag(v,,vp,vs,vs)|v; = + 1, 1<i<4}
={(m{)M e ()M =m,, k=123
m:.:(l’l»l,—l); Nk=o,1}EMXZ2.
3.17)
Recall that each element & ¢ of K ¢ can be written in the
formk ® = (m )™k, where keK, N, = 0,if k‘cKand N, = 1
if k “‘¢K. Thus we can write
K=0(4) = (M*/M) «SO(4) =Z, K.
The minimal parabolic subgroup P§, of G € is

PS=M“4°N = R* XZ, X MAN = R* XZ,XP,,
(3.192)

and the other seven parabolic subgroups are [cf. (2.33) and
(3.10a)]

Py=G=M,, A,=N;={1},
P:b =M:bA :bNab (d,b=0,1,2,3,
Ao, =exp(ay,), My =Z,&M,;

the M ¢, are given by (3.10c) and (3.10d) with the change
M- M-

For the nonparabolic subalgebra analogous to 4 * we
have [cf. (2.58) and (3.11)]:

(4%)¢ = exp((a*)*) = {a** = e%a*|qeR, a*ed *}.
(3.20)

Finally we consider the group G° = GL(4,R). For the
maximal compact subgroup K ¢ we use (3.18) and obtain

K=~ 04) = 7,&K =Z,&K. (3.21a)

(3.18)

a<b), (3.19b)

For the simply connected subgroups we have A°=A°N°¢
=N, N°=N,and (4%)° = (4%)°. Thecentralizer M° of

A =A° (or equivalently 4) in K °] obviously is
M =2,6M=17,&M&Z, (3.21b)
For the parabolic subgroups we obtain P = M 4 °N

=R*XZ, &P, P, = G°= M3, 45, = N, ={1},
and P, = M:, A5, N,,, where
M =Z,&M, =7,&M, &Z, (3.21¢)

The M ¢, are given by (3.15b) with M replaced by M °.
Now we are ready to prove an analog of Proposition 1.
Proposition 2: The only cuspidal parabolic subgroup of

G= SL(4R) [G*=GL(4,R), G°= GL(4,R)] is the

minimal parabolic subgroup P, (P¢, P§, respectively) giv-

en above.

The proof follows the reasoning for G = SL(4,R). In-
deed rank G=3, rankG°=rank G*= 4, rankK
=rank K¢=rank K°=2. Thus Py P, P—f,, are not cu-

spidal. For the other parabolic subgroups the subgroup M

always contains the factor SO(1,1) [cf. (3.15b), (3.19), and

(3.21c) ], which does not have discrete series representa-

tions. Thus P,,, P¢,, and P_f,,, are not cuspidal.

C. Explicit construction of the Weyl groups
Let M’ be the normalizer of 4 in K, i.e.,
M’ = {keK |k ~'aked, Vaed}. (3.22)

It is known that M'/M is isomorphic to the Weyl group
W(g,a). Let w’ be the homomorphism from W to M ' satisfy-
ing

o'(w) 2,0’ (w) =w&,), a=123, VYweW.

(3.23)
Of course it is enough to impose (3.23) for the generating

elements of W — w,,w,,w,. For these we obtain

|
'{a, 0|0 O
, 0O 0|0 B
@' (W) = \0 0 |8, 02 @ Buybi= t+ 1, a,By.0,=—1¢, (3.24a)
(\0 |0 O
(a2, O 0 \ A
0
o' (w,) = 1 %2 0 s ; apand b =41 aad.b_=—1}, (3.24b)
0 +
L Y, ,
f{ 0 a, 0 \ N
0
o' wy) = [ %= s 5| era b= 21 aas8- 17, (3.24¢)
O 1
;\ ‘ 0 62} P

We note that each ' (w, ) is isomorphic to M, as it should be
as an element of M. For the remaining elements of W we
have [cf. (2.26)]
o' (w, ... ) =0, ~w,)=0"(w) o Ww,).
(3.25)
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In the explicit construction of the intertwining opera-
tors it is convenient to work with fixed elements of M, ob-
taining thus explicit matrix representation of W. For this we
should fix the parameters in (3.24). We shall usually work
with the following particular choice, which gives the isomor-
phism between Wand M '/M:
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!1 Ol 0 0\
0 1

o(w,) = g g \—l ol’ (3.26a)
\0 1 0 0)
R

o(w,) = Tl (3.26b)
Y

Lol O

o(w;) = N 0 (3.26¢)

0 ‘0 —1

Analogously let M be the normalizer of 4 in K,
M’ = {k = (u,v)eK |k ~'aked,
k=k(k) = k(u,p), Vaed}, (3.27)

and note that M'/M = W(g,a) = M'/M. Let @ be the ho-
momorphism from W to M, satisfying

k@w))" '8,k @w)=w@,) (a=123), YweW.

(3.28)

It is an easy (but tedious) calculation to find @ from (3.28).
However, we shall not reproduce it here since in the applica-
tions we need only the isomorphism between Wand M'/M
displayed in (3.26).

In the nonparabolic case (2.36) the representatives o'(s)
of the restricted Weyl reflection (2.41) must satisfy

o(s) " Do(s) = — D. (3.29)

Thus we have a seven-parameter family of representatives,

a(s) = (0 B)GG, (3.30)
y O
and the most frequent choices shall be
(0 - 12) _ (0 12)
o(s) = (12 0 or o(s)= 1, o) (3.31)

IV.IWASAWA AND BRUHAT DECOMPOSITIONS. HAAR
MEASURES
A. The iwasawa decomposition

It is well known that every element of a semisimple Lie
group G may be represented uniquely as a product,®* which
we shall write, in the case G = SL(4,R), as

a
g=(y §)=k( gin;(gla,(g) 4.1)
where
al BI
k(o) = (y’ 8')EK’
talal + ‘7”7’ = 12, tﬁlﬂl + ‘6!6! —_ 12,
‘aB’'+ Y6 =0

[cf. (3.2)], n;(g)eN, a;( g)eA shall be parametrized as in
(3.5b) [resp. (3.3)]. The explicit expressions of the param-
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eters of k,n;,a; through the parameters of g is very involved

and requires the consideration of many particular cases.

Fortunately in the application to the elementary representa-

tions we shall need only the Iwasawa decomposition of the

elements of the subgroup N [cf. (3.4b)]. In this case the

explicit expressions are (we drop the primesona’, 8',7,8")
a,=1/A,,

ay=[1+x3 +x% —y, (xx_+xx,)]/AA,,

(4.2a)
a,=[y.(1+x3+x2)—xx_—xx,]/AA,,
a_= —y,/A,,

8,,6,,6 . asa,a,a ., respectively, with the changes
X, e x_, (4.2b)
AL —A, y,—> -y,
A, =[1+x1 42 Fo, (exg +xx,)
+% (L+x +x5)]',
A=[1+4+x}+x3 +x%
+x2 + (x, —x, x_)%]"3 (4.2¢)

i, =[x, +xx5) +y: (1 +x3 +x%)]/4,

(4.2d)
e"=1/(A,A_)"?

e'=(A,A_)V?/A, €'=A_/A,, (4.2¢)
B=3%5 y= —'%a, b,=8'%a, (4.2f)

where in (4.2f), a and § are substituted from (4.2a) and
(4.2b).

In the case G*= GL(4,R) we have, for the analog of
(4.1,

ge=k(g)n,(g)ar(g), (4.33)
where
. ae Be . .
k¢= (y‘ 6e)€K = 0(4);

taeae + tye,yt f— 12, tﬁeﬂe + 26262 = 12,

Iatﬁe+ treae=0, detke= :t l’
n,eN, ajeA © will be parametrized as in (3.5b), (3.16b), re-
spectively. The expressions for the parameters of k °,n,a°
through the parameters of g° are as in the case of SL(4,R),

the additional parameters ¢ and det & ¢ being [cf. text after
(3.17)]

e = |det g°|'/%, detk®=sgn(detg®) =(—1)"4
(4.3b)

In particular, for the Iwasawa decomposition of 7, formulas
(4.2) hold without changes, while, instead of (4.3b), we
have

e“=|det7i|"* =1, detk®=sgn(deti)=1. (4.3c)
Formulas (4.1) and (4.3) can be written globally also:
G=KNA, G*=K°NA°=R*X(Z, &« KNA)
= R* X (Z, & G). (4.42)

Analogously we shall write in the cases G = SL(4,R) and
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G =KN4,

G =K°NA® (4.4b)
= R*X(Z, « KNA) =~ R* X (Z, & G).

We shall write also the analogs of (4.1), (4.3)

g=k(D)n(g(D)ar(g(2)), (4.1)

g =k (Fmlg(Fai(g(2), (4.3

where g( £),g°( g°) is the image of g,g°, respectively, under

the projection G— G, G*— G*, respectively. Formulas
(4.1'), (4.3') do not have a matrix representation in general;
however, they have it for § (respectively g°) belongmg to the
15-dimensional as G (resp. 16-dimensional as G ¢) manifold
NNA (resp. NNA ) (the order of the factors is not essen-
tial). (The meaning of this will become clear in the next
subsection.) In particular, k(#) = k °(7) = k(#).

As we mentioned at the end of Sec. III A, we shall use
the Iwasawa decomposition to give the exact imbedding of
the group G, =S80, (3,1) in SL(4,R). Namely let G,
=K, A4,N, be the Iwasawa decomposition of G,. Then we
have [cf. (2.6), (2.8), (2.42), (3.5b)]:

(4.5a)
(4.5b)
tb xb
. N bE ,b 13
1-b%2 —b%2 ], 1;2=(b‘ i)b (4.5¢)
b2 1+b22) T VT
- x
- e |, ST (450)
-x72 1+x2) T 77

J
K, =1k.eK |k , k,eS0(3)},
L, | 0
A,=4{a, =exphY,, = coshhs sinhh |, heRp,
sinh A coshh
1,
N, ={n, =explb,(Yys + Xp3) + b:( Yy + X33))=| — b
b
1,
N, ={f, = explx,(Yis — Xp3) + X%(Yps — Xp3) ] =| x
X
Note that Y, —X;, Y,,—X,; and Y, + X,

Y,, + X, span the positive and negative, respectively, root
spaces with respect to the algebra, spanned by Y,,. For more
details on the structure of SO, (3,1) [and SO, (n,1)], see
Ref. 15.

As we mentioned after formula (3.15) we shall explain
in more detail the double cover of G' = SL(2,R). Let
G'=K'A'N' be the Iwasawa decomposition. Then
K' = SO(2) and its double covering group is the group
Spin 2, which is a one-parameter subgroup of the double
covering K = SU(2) XSU(2) of K = SO(4). For the three
different imbeddings of G’ = SL(2,R) in G= SL(4,R) in
formula (3.15b) the group Spin 2 is the one that contains the
set M, (which for that reason is factorized out from M).

B. The (Gel'fand-Naimark-) Bruhat decomposition
We recall that almost every element of a semisimple Lie
group may be written in a unique way as a product?®
g="r(g)ng(gasz(g)m(g)
(ieN, ngzeN, azed, meM). (4.6)
The exact statement in the case of G = SL(4,R) is the fol-
lowing proposition.
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Proposition 3: Let

a
~(c Do

and let «,6,det5#0 (k=a —B5~'y). Then formula
(4.6) holds. Alsolet i1,ng,a,,m be parametrized asin (3.3)-
(3.6). Then these parameters are expressed through the pa-
rameters of g as follows:

e det 1/2, o _ Sikcy |12
8.k, det
(4.7a)
o 5_ 12| det x | 174
K, det &
s=ps-, y,=Xx , 05— (4.7b)
K, 8,
b= (145 )
1 K
(4.7¢)
L =0,6/detd, zz_ =«x_k,/detk;
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v, =sgn(k, detx) = (— )™,

vy =sgni, = (—1)%, (4.7d)
V3 = Sg]161 = ( _ I)NB,
vy=sgnd,detS=(— )N +M+N

Proof: By straightforward matrix multiplication. (Note
that det k0 always.)

When the condition x,8, det § #0 is not fulfilled the de-
compositions of g are of the form

g =ow(w)i*nam, weW(g,a), (4.8)
where

A*eN* = w(w) ~'No(w)nN. (4.9)
Denote

G¥ = w(w)N“NAM,

(4.10)
d,, =dmN¥ d,=dimG"
d, =d,, +dim(NAM) =d,, +9. (4.11)

Then we can state the following proposition.
Proposition 4: Let

a
g= (7 g)eG =SL(4,R).

Let x,8, det 8 = 0. Then there exists weW(g,a,), such that
formula (4.8) holds and g belongs to the lower-dimensional
submanifold G *. Further if w,,w,eW(g,a), w,#w,, then
N“£N“, G"#£G". Letw = w; w;, - w; be given in the
reduced form (2.26). Then dim N* = 6 — n.

We shall give only a sketch of the proof. First one deter-
mines N ¥ for every w. For instance,

N“=N\exp(ls.EJ), k=123
N@=exp(ls.E;-, E; ES),

Ne=exp(ls. E;*,E; ES),

Nws= exp(ls. E["), Nw={1}, Wy = Wi31213

etc. Asaby-product of this we get diim N “ = 6 — n. Then we
build G * explicitly and show by exhaustion that all cases,
when x,6, det 8 = 0 holds, are accounted for.

Inthecase G ° = GL(4,R) we have the following propo-
sition.

Proposition 5: Let

g£= (: l;)eGe. |

Let also «,8, det §#0. Then

g =hna‘'m* (#eN, neN, a‘ed, meM®) (4.12)
holds. Let #,n be parametrized as in (3.4)-(3.6) and a°,m*®
be parametrized as in (3.16) and (3.17). Then these param-
eters (except v, and ¢?) are expressed through the param-
eters of ¢° as in formulas (4.7) and

vy=sgnd detS=(— )N +MtMH+N,
e = |det g°| V4. (4.13)

Proof: By straightforward matrix multiplication. [ Note
Vv,V v, = sgn(det x - det §) =sgndetg® = ( — 1)™.]
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When «,6, det 6 =0 the analogs of (4.8) hold with
a— a‘, m — m*. Note that (N)* =N,

(G°)* =w(w)N*NAM¢, (4.14a)
de, =dim(G)*=d, +1=d,, + 10. (4.14b)

Then Proposition 4 is true after the change G— G°,
G¥Y— (G"Y)°
If we set w= ideW(gJa) [cf. (2.26a)] in (4.10) and
(4.14), then w(id) = 1, N¥ =N, and
G°=G"=NNAM, G®=(G*)*=NNA°M*
(4.15a)
are dense submanifolds of G,G ¢, respectively. Analogously
G°=NNAM, G*°=NNA‘M* (4.15b)

are dense submanifolds of G,G °, respectively.

C. Haar measures

It is useful to note that almost every element of K can be
decomposed in the form

k = k (#(k))m(k), (4.16)

where k(i) is from the Iwasawa decomposition of #€N [cf.
(4.1), (4.2a),and (4.2b) ], and 71 (k) and m (k) are from the
Bruhat decomposition of &k [cf. (3.2), (4.7b), and (4.7d)].
To prove (4.16) we use the Bruhat decomposition of
k (7 (k)). Note that (4.16) is the group structure parallel of
the algebraic map (2.18).

Further we summarize some facts (see also Ref. 15) on
the invariant measure on G and its subgroups. The group G is
unimodular, its Haar measure is both left and right invar-
iant; the measures of the nonunimodular factors are chosen
to be left invariant.

The Haar measures on K, N, N, and A4 are given by

Ja’k =1, (4.17a)
.
dn=db, db,db, db_dz dz_,
dit =dx,dx,dx_ _dx_dy_ dy_, (4.17b)
da =dsdt dr.
Then the Haar measure on G has the form
dg=dkdnda. (4.18)
Using (4.16) we can express dk in terms of d:
1 apt0gagaciy - 1 dn
dk=-—e¢ di(k) = — ——m——,
2 = e A A
(4.19)
where log is the inverse map of exp: a — 4,
log: 4—q; (4.20)
p is half the sum of the positive roots [cf. (2.14)],
1 8 PO
p =7 Z A, p(81,8,85) = (3,1,0); (4.21)
k=1

and the normalization is fixed to satisfy_ (4.17a).
For the Haar measures on G, G ¢, G ¢, we have, respec-
tively,
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dg=dEdnda, df=dk, fd/?: L (422)
K

dg° =dk®dnda’, dk°=\dk, da°=dady,
fdk"=1;
KE

dg*=dk*dnda’, dk°=1dk, fd/?=1. (4.24)

Ke

(4.23)

V. THE ELEMENTARY REPRESENTATIONS OF SL. (4 R)
AND GL (4, R) AND THEIR COVERING GROUPS

A. The elementary representations of SL (4, R)

As we establish in Sec. III A (Proposition 1) the only
cuspidal parabolic subgroup of G = SL (4, R) is the minimal
parabolic subgroup P, = MAN. Thus by the results of Lang-
lands®*-Knapp-Zuckerman® the elementary representations
will be Py-induced representations of G. They will be para-
metrized by

x=l[c1,62,¢5;€1,€2,€; ], (5.1)

where ¢, €C (k= 1,2,3), will characterize the representa-
tions of 4, and are the values of a linear functional A for the
basis elements of a [cf. (2.9)]:

/‘v(épézyéb) = (€4,€2,C3), (5.2)
where €, = 0,1 (k = 1,2,3), index the characters of M.

Let D* be the one-dimensional representation of MA
given by [cf. (3.3), and (3.6)]
Dx(ma)E( —~1 )e,N, + &N, + e,N,e —s(3+¢) —t(l +¢) — (r/2)c‘3.

(5.3)

{Here, as usual, we have added to the linear functional A the
half sum of the positive roots p [cf. (4.21)].) Now we are
ready to introduce the representation space for the elemen-
tary representations of G:

€ ,={£C=(G,C)|Agman) = D*(ma)~' A g),
geG, meM, aecA, neN}. (5.4)

The elementary representation (ER) .7* induced by the
representation D* of Py = MAN (N is represented trivially)
is given by the left regular action of G

ch[fecw(ﬁ,C); Rl=(x{ +x3 +5% +x2 )%

(sgn x,)® &

(T*@ANEI=Ae7'8), 886, £T,. (5.5)

We shall write down some useful properties of the ER
following Ref. 27. We introduce the standard right action of
g%in C 2 (G,C) (see Ref. 28):

d
(X-£) (g)EF/Kg exp tX)|,_o, Xeg. (5.6)
It is easy to see that [cf. (2.15) and (2.20)]
E;-. /=0, k=1,.6; (5.7a)

érf=B+c)f &=+l & L= (/D)L
(5.7b)

Wenotice that (5.7) is equivalent to the covariance property
in (5.4) restricted to AN; since M is a discrete subgroup the
covariance property with respect to it cannot be translated
into algebraic information. We also notice that every ele-
ment /4% , may play the role of a lowest weight vector of a
lowest weight module over g€ Indeed /is annihilated by n°®
and the Cartan subalgebra §€ (of which the &, form a basis)
acts on /by scalars. This becomes more apparent if we re-
write (4.7b) in the standard form?®

b= A +p)E) s k=123 (5.7¢)
Properties (5.7) will be used in a sequel of this paper for the
construction of the invariant differential operators between

reducible elementary representations (see also Ref. 27).
We introduce a K-invariant scalar product in ¢, by

Gutide, =2 [ dk ZTBr i)
K

[cf. (4.17a)]; the factor 27* is introduced for convenience.
The representation .7 ¥ is continuous with respect to the to-
pology defined by (5.8). For some other properties of 7¥
see the end of the next subsection.

(5.8)

B. Noncompact picture of the elementary
representations

Here we introduce the so-called noncompact picture of
the elementary representations. [There is also a compact
picture that we shall not consider here (cf. Refs. 15 and
17).] The representation space in the noncompact picture
C, consists of C ~-functions over the subgroup N [cf.
(3.4)]. These functions have special asymptotic behavior,
namely,

x = et (wky ) (5.9a)
f( . )|x1,2|~|xt|~|5‘|—*°° Lﬂl +c, kz‘o 1k 1 +
|det X|/|R| <
. (sgny_ )63 © Y (s 1 k.
fEy, )|y_'|:m p_| e —a—a kzotp 3 (X 4) y_ )’ (5.9b)
2 ~ (sgny )+ 3 2 1 g
fQGRy, )\‘Jw PRECECEeES k§0¢§k (Zy-) 5 | (5.9¢)
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The functions ¢ ¥, are homogeneous polynomials of degree
k in the first variable and C ~-functions with respecttoy , ;
the functions @%,, ¢% are C *-functions of their argu-
ments. The action of the generating elements of the Weyl
group W(g,a) [cf. (2.24)-(2.26) ] on N, i, w, X, wyy , ,is
obtained by the Bruhat decomposition [ (4.6) and (4.7)] of
o(w,) 'A%y, ), where w(w, ) are the matrix representa-
tives of w, in (3.26):

w(w) _lﬁ(ﬁ,yi )

= AW k0, ¥, In(fe) la(ho)  'm(Ao) "

(5.10)
Explicitly we have
. l]j—detx x,
w1x="— N
X, x_ 1
Wy, =X, —X%y,, %#0; (5.11a)
e | X+ X
w2x— “‘x2—x_ s
Wy = —yy Wy_=Uy_, y_#0; (5.11b)
A_‘x_ —_ Xy
w3x'_ _x+ ’
wyy, =y, wyy_=—y_, y, #0. (5.11¢)

The elementary representation in the noncompact pic-
ture is defined in the space C, by

(TX(@) f) Ry, )=DX(m,a,) f (X,p,. ), (5.12a)
where x,, y,., m,, and a, are obtained from the Bruhat
decomposition

g iRy, ) =Ry, Ing ! (5.12b)
In the cases when (5.12b) does not exist, formula (5.12a)
will be defined by the appropriate limit as we shall explain
below. _

Explicitly we obtain in the generic cases (a) g = #'eN
(“translations” of N),

1, -1, —
a;, my

(T*@A") f) Ry L) =fR"p%) (5.13a)
=01=y, o)x-x)(1 +y_a_),

Vi =Yy —Vi;

(b) g = meM (reflections of N),

(TX(m) f)(Ey ) = (= D™ f @y, ), (5.13b)

N.
x;,2=(—l)Nl+N3x1,2, xj: =(_1)Nz+ 3x:i:’

+ =(_ I)N'+N1yi,
(¢) g = aeA (dilatations of N),
(TX(a) )Ry, ) = e— B+ —1l +c2)—(r/2)c,f(ir’y,i ),

(5.13¢)
x| =xe"% x;=xe"%
x,:t =xie——s—t:|:r, y’j: =yie—s+tq:r;
(d) g = w(w,) (Weyl inversion of %),
(T2 (W) SIRY 1 ) |50
— D)%(s —_ € .
=L DRn = X)® oty ), (5.03d)
‘le + ¢,
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(TH@WD)f)(EP ;) | =0
(—De+s

|1+x2+ +x2_ +x+x2_‘l+c,

X f‘, PhE(x;=0), £x ) (5.13d")
k=0

(e) g = w(w,) (Weyl inversion of y_ ),

(THo(wy)) )Xy, )'y_;eo

(—1D(sgny_)*
- LV—|1 + (1/2) (¢, — €, — €3)

(5.13e)

fwEw,y, ),
TXa(w)) f (B £ )|, —o=(— D%fo(wk, —y,);
(5.13¢")

and (f) g = w(w,;) (Weylinversion of y_, ),
(T"(w(wg))f)(id’i ) |y+#0
_ (—D)*(sgny,)"*=

y,|'+ /D@ —ate

(Tx(w(wa))f)(ﬁay;t )Iy*=o
=(— D%, (wsX, —y_). (5.13f)

Obviously formulas (5.13d"), (5.13¢'), and (5.13f") are sup-
plementing (5.12a). Now we can prove the following propo-
sition.

Proposition 6: The C = action of the elementary repre-
sentation is provided by formulas (5.13) together with the
asymptotic conditions (5.9).

Proof: First we notice that the asymptotic conditions
(5.9a), (5.9b), and (5.9c), respectively, ensure the C * pas-
sage from formulas (5.13d), (5.13e), and (5.13f) to
(5.13d"), (5.13¢'), and (5.13f"), respectively, in the limit
x,—0, y_—0, y_ —0, respectively. Further we recall (cf.
Propositions 3 and 4) that every element of G can be unique-
ly decomposed in the form g = ainam [cf. (4.6)] or in the
form g =w(w)n“n'a’'m’ [cf. (4.8)]. Now every element
neN can be obtained from some element of N by Weyl conju-
gation. Explicitly let n(b,)eN denote an element in the para-
metrization (3.5b) with all parameters except b, being set to
zero; analogously for n(b,), n(b. ), n(z_ ), and for the
elements 7N in the parametrization (3. 4b) Then we have

(5.13f)

Swkwyy, ),

n(b;) = o(we) ~'A(x, = b))w(w),
n(b;) = w(w,) " 'i(x, = by)w(w,),
n(b,) =o(w,) 'i(x_=b,)o(w,),
n(b_) =w(ws) 'i(x, =b_)o(ws),
n(z,) =ww,) 'R@_ =z,)ow,),

"y, =z_)o(ws),

(5.14)

niz_)=ow(w,;)”

where w,, ws, wg are given in (2.25) through w,, w,, w; [cf.
also (3.25) and (3.26)]. Thus T¥ is C = defined for every
element of G that concludes the proof.

Further we introduce a K-invariant scalar productin C,
by

(fpfz)c,EL TGy £y, WGy, ),
(5.15a)
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pr(R)=p*(Xp . )
E(A+)l/2(c' 4+~ —C+ 3+ Ts)

X (A_)I/Z(C,+E|—Cz—zz—cs—53)A¢2+Ez’

(5.15b)

and A _ ,A are given in (4.2c). The representation T'¥ is con-
tinuous with respect to the topology defined by (5.15). On
general grounds®® we know that the representations .7 ¥ and
T X should be equivalent. In more detail we have, in our case,
the following proposition.

Proposition 7: The equivalence of the representations
JX, formula (5.5), and T%, formulas (5.12) and (5.13), is
given by the operator B and its inverse, which are defined as
follows:

BE,—C,, (BY) (. )=/1i(2p ) (5.16)
(B~'f)(@)=DX(ma)~ ' f(%y,), g=hi%y, Inam,
(5.17a)

(B~ f£)(g)=DX(ma) ' im(TXw(w)) f) (& . ),

g=o(w)a(X"y", Ynam, n— #*=n(x"y% ). (5.170)

The operator B is isometric.
Proof: We must show that

BI7*=T*B, B~ 'TX=J*B~, (5.18)

which is straightforward and requires some care only when
(5.17b) is involved (its analog is missing in Ref. 23). [The
interested reader may find explicit expressions for the
asymptotic functions g %, in (5.9) in terms of limits of func-
tions from %, .] For the isometricity proof we shall show

(La)e, = (BLBA)c, - (5.19a)
Indeed using (4.16), (5.4), (4.19), and (4.2) we have

(;41 2)%1
=zﬂ4f ZO L (k)dk
k

=2ﬂ4f ZRGERONL4 (K (R (O Ym (k) Yk
k
- 21T4f ZU(R)) Al ()

_f /l(k(n))/;(k(n))Az Az Az

=ﬁ Alk(@)n(r)a(#))

N
X Lk (A)n(#)a (i) X (R)dh

=f A (X (R)dR = (BA,BA) - (5.19b)
N

Further we recall the general fact that €', and C, are
not complete as normed linear spaces with respect to the
topology defined by their scalar products. [They are com-
plete with respect to some Fréchet space topology that we
shall not introduce here (cf. Ref. 22)] Their completion
with respect to the scalar products (5.8) and (5.15), respec-
tively, will be denoted by #°, and H, , respectively.
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Finally we note that both scalar products are also G-
invariant if and only if ¢, = iT, 7, €R, k = 1,2,3. [Note that
then p¥(1) = 1.] These elementary representations form
the principal series of unitary representations of SL(4,R) act-
ing in the spaces 7, or H, (see Refs. 9 and 12).

C. Infinitesimal generators and Casimir operators of the
elementary representations

We write down the expressions for the infinitesimal gen-
erators in the noncompact picture for the generic (contin-
uous) subgroups N, 4, N using formulas (5.13) and (5.14).

(a) Thesubgroup]\”: letk=12,4+,—,e, =0c ,then
we have

ka(ﬁ:)yi )

i) f) (22, o

- 2., ); (5.20a)
T, f(Ry.)
(TXAY' N IEP )], o
+
_ 9 g
=(Fre gz Fogm 8yi)f( 2s)
(5.20b)

In (5.20) we have used the notational convention of (5.14)
to write in the arguments of 7i(-) only the nonzero param-
eters. This convention will be used also below for #(-) as in
(5.14) and for a(-)ed.

(b) The subgroup 4:

D f iy, )z%(T*(a(s))f)(fcwi Memo

ad a ad
— 13 —_— — 2x,—
[ +C‘+x+ax+ +x T + r
aJ a3 ] A
+yi—+y_— ) (521
y+ay+ +y P SRy, (5.21a)

Df Gy, )EQTX(a(t))f)(i,yi Mimo

J d aJ
l4e,+x,— _—t 2x,—
[+ 2 *évx+ L P

5]
Y+ e y— f(x,}’i

(5.21b)

D.f Gy, )E%(T*(a(r))fxxh Mymo

C5 a d d
= —|—= —Xx_ +
2 +x+6x+ * ax_ Y+ dy.

ER PP
_J,_I]f(wi ). (5.21c)
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(c) The subgroup N: defining

Cof G, )= a‘z (THR BN EP 2 ) oy mos
k

k=1921+9_’

C.. [y )= (TG OGP |-, o
+ azj:

we obtain, using (5.13) and (5.14),

(5.22)

d a a d
C, = 2 7 X, — XX _—— X, X_—
=5 ax, + tox, T ox_ e dx,

ad ad
+ O + x+y_)y_-é;_— + (x, — x—y+)y+ay—+

+ (1446, — 2+ ) x —x_p,)
+(L+4(c;—ca—e))xy +x,p_) + (1 +¢)x5;

(5.23a)
a a ad
C,= < < 9
z x+x_:9xl+x2x+3x+ o ox _
a a
2_Y _ x )
+xzax2+(x+ VX2 ay+
Gy (1 ex; (5.23b)
_ d A
s -x_xlg;]-+x,xzax+ +x- x _ - *ax,

a a
+ X+ Xy )Y+ (% —x_ m;a}—

-~ +

+Q2+4(c;+ca—cdpx

+ {1+, —c, =2y (5.23¢)
- a . 9 ] A
C_ —Jtﬂyicxax1 +x°, —c?x+ +x1x2—-—ax_ +x, 26x2

d d
+ (x+ —x7}’+)}’+5yj— (xl +x+y—)3yT

+ (244, +eatedx,

— (L4 4(e; — 2+ e3)peay s (5.23d)
a a
C, =Xy—+Xx_—
z, xlax+ +x axz
+y2_5y‘3—+(1+5(c1—c2—c3)1v_; (5.23¢)
a d
C - = ——— — —
z_ xlax x+ax2
+,V2+—a-'—+(1+5(c1—c2+03))y+' (5.230)
o 8

It is well known that the elementary representations are
operator irreducible in the sense of Schur’s lemma. Thus the
Casimir operators are multiples of the unit operator. In par-
ticular the second-order Casimir operator
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%€ .(y) =3(D*+D})+ D3
+ (TG4 + TGl +[T,,C ),
+IT.,C 1+ [1,,.C ]+ + [T,L.C ]+
=4(D{ +D3)+ D —3D, - D,
+2(T\C,+ LG+ T,C_+T C, +T,,

xXC, +T, C,) (5.24b)
has the value
C(x) =4(c} +¢5 +63/2) —5. (5.25)

Formula (5.25) is derived by direct substitution of the gen-
erators from (5.21)-(5.23). Another way is to use the low-
est weight module structure shown in (5.7). We exploit the
fact that the Casimir operator has the same expression
(5.24) every generator being replaced by its right-acting
counterpart according to (5.6). Then in (5.24b) only the
terms with D, (replaced by ¢, ) remain since [by (5.7a)] the
other terms annihilate the functions of ¢, ; then if we use
(5.7b) we obtain (5.25) at once. (Note that the constant
terms in D, coincide with the action of — &,.) For a more
general discussion we refer to Ref. 27.

Analogously we can obtain the higher-order Casimir
operators. The explicit expressions are

Cy(y) = (¢} — A)e,, (5.26a)

C4(X) =(1 +C§/2)(1C§ +1 —cf —c%) +C%C§ -—C%.
(5.26b)

D. The elementary representations of SL(4,R), GL(4,R),
and GL(4,R)

Denote as before G = SL(4,R), G*= GL(4,R), and
G*= GL(4,R) and the corresponding minimal parabolic
subgroups by P,, P, and P;,. The elementary representa-
tions induced from the minimal parabolic subgroups will be
parametrized by the signatures

,? = [CI,CZ,C3;€1,€2,€3,€4], (5273)
X = [€1,62,63,C43€1,€2,€3,65], (5.27b)
X = [€1,62,€3,C4;€1,€,,€3,€ 4,651, (5.27¢c)

respectively, where ¢, €C. These elementary representations,
which characterize the representation of 4 in (5.27a) and of
A°=A XR *Tin(5.27b) and (5.27¢c), are the values of linear
functionals 4,4 ¢, respectively, for the basis elements of a, o
=a & 3§, respectively [cf. (3.16a)]:
Al =4, A°(8) =c4 (5.28)

Aisasin (4.2); €, =0, index the characters of M, M, M.

The one-dimensional representations analogous to
DX(ma) in (5.3) are given by [cf. (3.14¢), (3.16b), (3.17),
and (3.21b)]:

D’—‘(ﬁa) = ( . l)e,N,+e,N,+s,N,+s.N.

—35(3 +¢) —t(1 + ¢3) — (7/2)c5,
xe 1 2 :,

(5.29a)
Dxc(mgae) — ( _ l)e,N,e—quA(ma)’

(5.29b)
m=m.(m)™", a°=e;
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DX (ma®) = (— 1)*™e~*DX(ma), m°=m(ms)™.

(5.29¢)
In (5.29a) we have added p [cf. (4.21)] to A asin (5.3); in
(5.29b) and (5.29¢) we have added to 4 © the half sum of the
positive roots of the system (g°%a°) [cf. (2.48)]: p°|, =p,
Py =0.

The representation spaces & ;, ?fxe, %)_(e are given by
(5.4) and the ER 7%, 7%, 7% act by (5.5) with the ob-
vious substitutions.

Further, for G* and G* one should add to (5.7b) the
equation &, f = ¢, fand (5.7¢) holds also for £ = 4.

The K-, K *-, K “-invariant scalar products are given by
(5.8) with the constant 277* being replaced by 47,4787,
respectively [cf. (4.22)—(4.24) ] besides the other (obvious)
substitutions.

We note that these ER are also ER of G when ¢, =0,
€, = €5 = 0. Analogously the ER of G ¢ with ¢, = 0 = & are
ER of G and with €, = 0 are ER of G *. The ER of G (resp.
G*) with €, =1 are double-valued representations of G
(resp. G°). [To facilitate the phrasing of the above state-
ments we have enumerated the signatures in (5.27b) a little
oddly.]

Bearing the above in mind we can introduce the non-
compact picture of the ER for all three groups using the
formulas for G. Besides the obvious substitutions, the
changes are as follows: in (5.12b) we write

g(@ AR,y )= A(%g pg g la; 'm(mig) Y,

(5.30)
whereg( g), m(7i) are the images of g,77 under the covering
map (3.14g) [cf. also (4.4) and (4.15)];in (5.13b) the sum
3, € N, involves the €, of the corresponding signature; and
the second line of (5.13b) is replaced by

xp=(— DM+ xp = (= DHNiENr Ny

X, = (=Mt oxt = (= 1NN,
(5.13b")
Yo = (=DM ANy Ly (DR Ry

in (5.13c) for a — a° = e%s the right-hand side is multiplied
by e~ %+ Westress that x',y’, in (5.13c) remain unchanged
as all formulas in (5.13a) and (5.13d)—-(5.13f).

There are several technical reasons for the applicability
of the SL(4,R) formulas: the Weyl group is the same for all
cases, the basis of M was chosen as to project on the basis of
M plus the unit matrix, and in the G ° and G ¢ cases the repre-
sentations of the center R* do not act on N.

Thus all statements including Propositions 6 and 7 re-
main valid also for G, G, and G . In particular, the principal
series of unitary representations of G, G*, and G* is obtained
for ¢, = iry, 7,€R, 1<k<3,4,4, respectively. Note that no
restrictions on the corresponding €, are made. For G we
refer to Refs. 11 and 13. For the connected part of G ¢, that is
G¢=G*°/Z, = R * XG, thus €; = 0, the principal series of
unitary representations was obtained for €, =€, = €; = €,

= 0 by algebraic considerations in Ref. 17 and was used for
€, = €, = 0 in Ref. 19 (the latter is not straightforward).

Since G and G have the same Lie algebra the infinitesi-
mal generators and Casimir operators of the ER y and ¥
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coincide and are given by formulas (5.20)-(5.26). For the
Lie subalgebra a®in the cases G and G ¢ we can introduce an
additional generator D,,

D f3,y.) E?% (TH@ @D SN Ry ) ]yoo = —cof,
(5.31)

its action naturally being equal to the right action of — &, by
(5.6). It is obvious that it commutes with all other genera-
tors and is the fourth (first-order) Casimir operator in the
cases G°and G

—D,=C(y) =C,(¥°) =c, (5.32)

It is, of course, a general feature that reductive Lie groups
(as G° and G °) have dim 3 in number first-order Casimir
operators, where as here 3 is the Lie algebra of the contin-
uous center (in our cases dim 3 = 1).
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The symmetric group: Algebraic formulas for some S, 6j symbols and
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Explicit rank-dependent expressions have been obtained for some symmetric group (S;) 6/
symbols and some S, D.S;, XS, 3jm symbols using Butler’s recursion method. A key point in
deriving these results is the use of the reduced notation introduced by Murnaghan to label irreps.
Various symmetries of the 6 and 3jm symbols have been imposed. These include the complex
conjugation, permutation, and transpose conjugation. We incorporate a new symmetry that arises
from the occurrence of the two isomorphic direct product groups Sy, XS, and Sy, XS as
subgroups of S;. In relation to the tables of 6/ and 3jm symbols presented, a discussion is given of

the symmetric group-unitary group duality.

I. INTRODUCTION

The symmetric group has come to play an important
role in many different contexts in mathematics, physics, and
chemistry. As a finite group it assumes a central role by Cay-
ley’s theorem and exemplifies many of the group-theoretical
concepts. Furthermore its close relationship with the gen-
eral linear group and its subgroups via the methods of tensor
analysis imply that the symmetric group lies in the back-
ground of numerous problems. Moreover, the symmetric
groups occur as a symmetry groups of quantum (and classi-
cal) mechanical systems that contain a number of identical
particles, and as such have been used extensively in atomic
spectroscopy, nuclear physics, and molecular theory. The
physical reason for the quantum applications stems from the
bosonic and fermionic nature of the particles.

One main consideration to be made, especially in regard
to applications, is the determination of the 3jm symbols
(Wigner, symmetrized coupling, or Clebsch—Gordan coeffi-
cients) and 6j symbols (Racah or symmetrized recoupling
coefficients). From the early 1950’s, nuclear spectrosco-
pists, such as Jahn, Elliot, Hope, Horie, Kaplan, Kramer,
and Vanagas,' developed methods of calculating these coef-
ficients. Hamermesh? gives a systematic treatment of the S,
Clebsch-Gordan coefficients by a recursion method em-
ploying S, D.S,_, coupling (or isoscalar) factors. More re-
cently Schindler and Mirman® have produced tables of these
coefficients for the groups .S, to.S, using projection operator
techniques, while Chen and co-workers* have presented in-
dependently similar tables using a commuting operator
method. Both sets of tables give numerical values, the former
in floating point and the latter in rational form. However,
due to the rapidly increasing rank and dimensions of the
irreducible representations (irreps) of the symmetric group,
these methods and others based on the explicit construction
of matrix representations are seen to be cumbersome and
formidable to use. Moreover such tables for S, /> 6, would
be enormous and impractical to present. The unitary groups
also share the same problems. These were shown’ to be
largely overcome by choosing an algebraic approach.
Butler’s building-up® method is well suited for such an ap-
proach since no explicit matrix representations are re-
quired—only a knowledge of the character theory, namely
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dimensions of irreps, products, and branching rules, is need-
ed. Furthermore, by casting these results in a rank-indepen-
dent form, the rank dependency of the unitary group 6 sym-
bols and U,, DU, XU, 3jm symbols was able to be
obtained.

In this paper the symmetric group is used to illustrate
again this rank-independent algebraic approach. We present
tables of algebraic formulas of primitive 6/ symbols for S,
and primitive 3jm symbols for §,28, XS, (f=/f;+/3)
valid for all values of f,, f,, and /. The paper is arranged in the
following way. In Sec. IT we give the necessary character
theory of the symmetric group. To cast it in a rank-indepen-
dent form we have used the reduced notation introduced by
Murnaghan’ for labeling irreps of S;. Littlewood® and Butler
and King® employed this notation to derive many of the
character theory results given here. In Secs. III and IV we
give a guide to the tables and an outline of the method of
calculation; a detailed account can be found in Ref. 8. In
Secs. V=VII various symmetries of the 6/ and 3jm symbols
are discussed. The transposition symmetry arises from the
occurrence of Sy, XS, and S, XS}, as subgroups of S , /.,
while the transpose conjugate symmetry originates as a con-
sequence of the one-dimensional alternating irrep [ /'] of S
Above we mentioned briefly the connection between the
symmetric group and the compact continuous groups. By
way of example, we consider the unitary groups and the “du-
ality” symmetries that arise. This duality leads to a powerful
method of determining unitary group transformation coeffi-
cients, such as the U, ,, DU, XU, 3jm symbols. Moreover

P\P2
this symmetry is independent of the unitary group ranks.

Il. S, GROUP INFORMATION

In this section we give an outline of the properties of the
irreps of the symmetric groups. We shall be using two nota-
tions to label the irreps of S;. The first is the well-known
partition label. A partition of the integer f is a set of p inte-
gers Ay, Ay, A, With A, + 4, + - + 4, =/, and denoted
(44,4, ) or merely (4). We include the possibility of neg-
ative integers for one or more of the A,’s. If the parts also
satisfy A,>4,>+>4, >0, (1) is said to be regular. There is
then a natural one-to-one correspondence between all regu-
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lar partitions of the integer f and the S irrep labels, which
are denoted by enclosing the partition in square brackets
[A]. Such a labeling is often called natural or standard. The
nonstandard labels, that is, those with nonregular parts are
character-equivalent to within a sign to standard irrep la-
bels. The prescription for this correspondence is given by the
irrep label modification rule

[Asseedisi g 1y ]
— [Averdinr — LA + 1Loud, ] 2.1)

Repeated application may be necessary to obtain a regular
partition. Note also that if 4, , , =4, + 1 for any 1<i<p,
the partition label is inadmissible or null. We shall denote
this null label by &.

The second labeling, called the reduced notation, origin-
ated from the work of Murnaghan’ on the group embedding
Os_, DS, and exploited to great effect by Littlewood® and
Butler and King.® It is obtained from the standard S; irrep
label [A] by dropping the first part A,. The resulting parti-
tion (y) is then a regular partition of f — A, into p — 1 parts.
We shall denote this labeling of the symmetric group irreps
by using angular brackets (). For a given f the standard
labeling can be recovered by

Ny = v v = = Lrivevg] (22)
where () is a partition of / into g parts. When f — / < y,, this
correspondence leads to nonstandard labels, which may not
necessarily be discarded and must be modified according to
(2.1). In what follows, we shall use 4, u, and v to denote
standard irrep labels. The corresponding reduced notation
for these standard labels will be denoted 7, 7, and «, respec-
tively. The advantage of the reduced notation is that the
properties of the irreps can be given independent of the rank.
For example the dnmensxon of the irrep [/1] is given by Rob-
inson’s formula'®

|[/1]|=f!/H[/11,
where
hlh)!
H[l]=—"l_—p_, (2.3)
Hi(j(hi _hj)

and the hook length o, = A, + p — i . This gives numerical
results only. The rank-independent formula can be obtained
from

), =L [,[[l(ho h.-)] H:” ,

where (y) is a regular partition of / into g parts,
ho=f+q—1lLandh, =y, +q9—i(i=1,.,9)arethehook
lengths of (). The f dependence has now been factored, and
the dimension is given as a factored polynomial in f. How-
ever, the f dependency can be obtained in a different way via
the modification rules. Using (2.1), we find the particular
values, say g, for which the irrep label [f — /,7,+y, ] reduces
to the null label &. Since @ is of “dimension” 0, the dimen-
sion formula for [f— /,,---¥,] must reflect this vanishing
by an (f— a) dependency. For example, using (2.1) and

(2.4)

(22), (2) is mull for f=0 (ie, hy= —2,
(2)=[—220]= —[1—-10] =[1—-10] =@) and for
f=3 (e, hy=1, 2)=[12]= —[12] =D). Hence
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[{2)|; <f(f — 3). The numerical part can be obtained by
taking a fixed value of f for which (2) is admissible such as

f=4. We know |(2)|,=1[22]| =2. This implies that

|2}, =ff—3)/2.
The Kronecker products of the irreps are usually ob-
tained using the inner multiplication of Schur functions' "'

XAl =S ml s [A1, (2.5)

where (4,), (4,), and (1) are partitions of the same integer f
and mj ., is the multiplicity of A in the Schur function
inner multiplication 4, © A,. Tables of inner multiplication
are to be found in Refs. 12 and 13. Again these results apply
for a specified rank. Butler and King® give a rank-indepen-
dent result based on the reduced notation

) X(r2) = Y ((1/€6.)-(r2/6€2)-(£,°6)))

31

= 2 my,.v),

where “/”, “”, and “0” are the Schur function operations of
division, and outer multiplication and inner multiplication,
respectively. Tables of these operations are to be found in
Ref. 12. The partitions £, and £, are restricted to being parti-
tions of the same integer by the inner multiplication. The
result is valid for all £, however, to make an application to
any particular .S, we must use (2.2) and (2.1), by which the
product can be given in standard partition form. As an ex-
ample of the use of (2.6) we give the following product:

(1Y x(2) = z ((1%7€£1)-(2/€€5)- (&, ° £,))

§1626

= S (1%/6)(2/€)- (£, 0 &)
4+ {(1/E)-(1/E) (£, 0 EN],

since £ is restricted to being 0 and 1, with (12/0) = 12,
(1?/1) =1, (2/0) =2, and (2/1) = 1. The terms (£, © £,)
can range over only (000)=0, (lo1)=1, and
(1202) = 1. Hence using (12/12) = 0, (2/1%) = @, and the
other Schur function divisions given above, we have

(12) X (2) = (12.2.0) + (1-1-1) + (0-0-1%)
+ (1:1:0) + (0:0-1)
= (21%) + (31) + (1) +2(21) + (3)

+2(1%) +(2) +(1).

For f>7 this result needs no modification but for smaller
values of f we have

f=0 (OXD=+D+D—(0)+20
+©0+2(0) + D —(0) =
f=1 X —(0)= —(0)+D+D+2(0)

(2.6)

@.n

(2.8)

+0+20—-(0) +0=0,
f=2: OX —(1)=+D+(0)+9D+D
0 +20— (1) + (1) =D
[=3 (HXB=+D+B+D—2(1%)
- () +2(1)+24+(1)=0
(2.9)
R. W. Haase and R. Dirl 9201



—(PP) = (1) + (1) + 22
—{2) +2¢1%) + (2) + (1),
+@— (21) + (1%) +2(21)
+ D +2(1%) + (2) + (1),

+ (217 + @ + (1%) +2(21)
+ (3) +2(1%) + (2) + (1) .

Note the cancellation of terms, especially the multiplicity
cases (1?) and (21) for f=4 and f = 5, respectively. Such
results illustrate the point that the reduced notation and the
modification rule (2.1) give a natural f dependence to the
multiplicity separation problem.

The symmetric groups contain two one-dimensional ir-
reps, the scalar irrep (0) = [f] and the alternating or pseu-
doscalar irrep (1~ !) = [1/]. These lead to symmetries
within the group. The former is associated with complex
conjugation symmetry; the scalar irrep always occurs in the
symmetric part of the Kronecker square of any irrep, hence
all the irreps are real orthogonal irreps. The latter gives rise
to the transpose conjugate symmetry, which relates pairs of
irreps [A] and [A]. The partition () is obtained from (1)
by interchanging rows and columns of the Young diagram of
(A). Therelationship is expressed by the Kronecker product

[AIX[V]=[4]

f=4 (1HxQ2)=

F=5 (1Hx(2) =

f=6 (P)x(2) =

or

(MX=H) =(y). (2.10)
From the second equation we note two points. The first is
that the partition () is not the transpose conjugate partition
of (7) in the sense that (4) is of (4). The notation used here
is to denote that for each (7) there is one label (7) given by
(2.10). Now, (¥) can be obtained from (y) by the steps

The second point is that (2.10) is rank dependent. To ex-
press the transpose conjugate symmetry in a rank-indepen-
dent manner we shall denote the pseudoscalar irrep as

0y =1 = [V]. (2.12)

This emphasizes more clearly the one-dimensional nature of
[¥], and the symmetry derived from it,

(1) X0 = (). (2.13)

Butler has used a similar notation for the point groups. The
transpose conjugate symmetry will be discussed further in
Sec. VL.

The final group information that we require is the
branching rule for the group-subgroup chain S, DS, XS,
withf, + f, = f. In terms of regular partitions this is given by
the outer multiplication of Schur functions involving the
well-known Littlewood-Richardson rules

[A 1Y (pIX[A/p] =3 m;, (k]X[v],

where [1] and [v] label Sy, and S, irreps. The same branch-
ing rule can be expressed in a rank-independent form

WY Amy/ng) = 3 my, () X (k},

where (1) and («) are S; and S, irrep labels, and 7 is a one
row partition whose integer values range between 0 and y,.
For any particular values f; and f;, the modification rule and
(2.2) may be necessary to convert this rank-independent
result into standard partition form. For example, we derive
the decomposition for irrep (2),

(2.14)

(2.15)

)Y () X{(2/(0 + 1 4 2)-77)

22 210 _ @1 _ 12 (MX(2+1+0)/7)
vy = [A]1 - [A]1— (), n
eg., .11 1(0) X ((2) + (1) +(0))
()= [f=2,1)=[3, V3] (1 ) . + (1) X ({1) + €0)) + (2) X (0) . (2.16)
TABLE I. Symmetric group properties.
Notation: _ B ; }
Jf-independent 0 1 2 12 i? 2 i ]
reduced (0) {1 (2) (1% (=) (2¥—*) (=2) (=1)
standard N F-11] [f-22] [f—2,1% [3,=%) [2%,V—4] [2,1/-2] (]
Transpose 0 i 2 iz 12 2 1 0
conjugate
Dimension 1 f—1 =372 (-Hy-272 F-Hy-2)2 ffF-3)72 f—1 1
Power of 0 1 2 2 f=3 -2 f-2 f—1
the irrep
Triads and 3/ phases
0 0 0 0 + 2 2 1 0 + 12 2 2 0 +
1 1 0 0 + 2 2 2 0 + 12 1? 0 0 +
1 1 1 0 + 2 2 2 1 + 12 12 2 0 +
2 1 1 0 + 12 1 1 0 - 12 12 2 1 +
2 2 0 0 + 12 2 1 0 + 12 12 12 0 -
Branching rules and transposition phases
0 ! + 0x0
1 i - 0x0 + 0x1 + 1x0
2 1 + 0x0 + ox1 + 1x0 + 1x1 + 0x2 + 2x0
12 | + ox1 + 1X0 - 1x1 + 0x 12 + 12x0
902 J. Math. Phys., Vol. 27, No. 4, April 1986 R. W. Haase and R. Dirl 902



TABLE IL The S, 6 symbols.

12

12

12

12

11

1 1

1 1 0000
1 1

1 1 0000
1 1 0000
2 1

1 1 0000
1 2 0000
1 1 0000
2 1 0000
1 1

1 1 0000
1 1 0000
1 1 0000
2 1

1 1 0000
1 2 0000
2 1 0000
1 1 0000
2 1 0000
1 1 0000
2 1 0000
2 2

1 1 0000
2 1 0000
2 2 0000
1 1 0000

+

f-3
(f—l)(f—Z)

1
TU-nU-2

fP=3+4

MY A YT Y

1 74
ARTEETR oy

fP-1+8 1
-DU-2\J A -H-4

1

S . B
F-2)(f-3)

27% — 1572 4+ 287 — 16

YR Dr-DU-hU—a

MRSV YTAY
o=

AR TTYT

1 1
+ —_—
-\ /-1

12210 f=4
2ot [

f—4
ff-)¢-3
1 7—4
f-2) D=3
1
F—DG-D0=3
1
MY

Y- +4
Sf-DHF=-2(¢-3)

+

F—4
SU-3)

(f—2)(f 3) \’

— 92 + 20/ — 16

—f(f—l)(f D=3 F—4)

(f—l)(f—Z) \’ - 3)(f—
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TABLE II. (Continued.)

12 1 1 0000
12 2 1 0000
r r 1

1 1 1 0000
1 1 2 0000
1 1 1 0000
2 1 1 0000
2 1 2 0000
2 2 1 0000
2 2 2 0000
2 1 1 0000
I 2 1 0000
12 P 1 0000
r r r

1 1 1 0000
2 1 1 0000
2 2 1 0000
1 1 1 0000
12 12 1 0000

1 f—4
-D-2)\JAr-3
S S
F-nHy-2)

—{1?210}

+

_ V=3
F-DU-2)

=3
F-D(-2)

f=5 1
F-ny-\ f-3

2 1 1
—11°210
¢ }f—2 V -bi-3)
1 F—4
F=-¢-3r\sruU-n

23 7—4
F—or—o0-n\ 7
fP—7+8 1
- DU=-D0—n -
1
MY
1
T D-D0=3

N 2>—7
f-nye-2¢-3

+{1*210}

+

—{1*210}

+{1°210}

=3
F-nHy-2)
1 1
F—Hy-2\ f-3
1 7F—4
F—=2¢-3 S

+

+{1?210}

+ {12210}

1 1
-\ 73

f—5
-DE=-DU-

We note two symmetries of the branching rules. If

(v)dmj, () X (), (2.17)
that is, it forms a “‘ket branching,” then we have for /| and /,
large enough

()2 mi, (k)X <m), (2.18)
and

()2 m¥; (n) X (), (2.19)

where m,?,,-, =m}, =m}, >0, as ket branchings. We must
remember also that (¥), (7), and (k) are not the transpose
conjugate partitions of (¥), (%), and («), but must be ob-

904 J. Math, Phys., Vol. 27, No. 4, April 1986

tained by (2.11). The symmetries originate from the trans-
position of the subgroups S, and S, and the pseudoscalar
irreps, respectively. We will return to give a fuller discussion
of these symmetries with regard to 6j and 3jm symbols in
Secs. V and VI

lil. A GUIDE TO THE TABLES

Table I summarizes all the group information of the
symmetric group required for our calculation. The irreps are
ordered according to the power of the irrep, defined as the
smallest integer p(y) such that the p(y)th power of the
primitive (or defining) irrep (1) contains (y). For those
irreps of equal power, the ordering is fixed according to a

R. W. Haase and R. Dirl 904



comparison of the parts of the two partitions, the one with
highest part first. Note that in reduced notation p(y) =1/ if
(7) is a partition of /. A conversion between our rank-inde-
pendent notation, standard labels, and the reduced notation
is given along with the dimension formula, power, and trans-
pose conjugate label for each irrep.

The Kronecker product rules are specified by means of
triads. Thus (,7,75r) forms a triad if the scalar irrep occurs
at least 7 + 1 times in the triple product (y,) X (¥,) X {¥3)-
We take the range of r to be initialized from zero. The triad is
ordered according to the irrep order with highest first. Each
ordered triad has an associated phase, the 3j phase, which
gives the symmetry on reordering coupled products. These
3 phases, {y,7,7,r}, are given in Table I.

The branching table gives the reduction of those irreps
of power less than 3. The reduction of the other listed irreps
can be obtained using the transpose conjugate symmetry. No
branching multiplicity occurs. The table also includes the
sign of the transposition phase (see Sec. V.), which gives the
symmetry on transposing the subgroup irrep labels of the
associated ket branching (y a 9 ), a =0,...,m}, — 1. This
sign is placed before each subgroup irrep label.

The 6 symbol is a transformation coefficient related to
recouplings between a set of six irreps by means of four triad
couplings. The triads occur in the 6j symbol

[ri 72 r;]
Yi V2 Valnnrr

in the order (7] 7.¥:"1),
Mriviryd.

The 6/ symbol is necessarily zero unless the six irrep and
four multiplicity labels fulfill the four triad conditions. Sym-
metries are used to reduce the size of the table and so we need
the following (we have used the reality and orthogonality of
the symmetric group irreps): (i) invariance under even per-
mutations on the columns; (ii) column interchange symme-
tries, such as the (23) column interchange operation

[7{ 73 75] _ [ri v rﬁ]
1 Y2 Vsduwe vt Vs V2 lunee,
X1y vayrsrHr vs var}

x{r72 V3 ’3}{7’1 R ADE
(3.1)
and (iii) the row-flip symmetries, such as the (23) flip oper-
ation

[7; 73 73} _ [ri 72 73}

Y1 Y2 Vilnneen Vi Y2 Yilrpws
The phase in (ii) is the same for all interchanges. The 6/
symbols of S, are tabulated in Table II. The boldfaced type
headings denote the top line of the 6; symbol and each subse-
quent entry denotes the possible lower line (three irrep and

four multiplicity labels) and its corresponding algebraic for-
mula.

The 3jm symbols

71 Y2 IZRY
a, a, as;
iK1 Ky T)3K3/ s

905 J. Math. Phys., Vol. 27, No. 4, April 1986

M vavsr)s (Mvavi ),

3.2)

are also zero unless the top and bottom lines form triads of
their respective groups, and the columns satisfy the ket
branching criterion. Similarly symmetries are used to reduce
the size of the table. These are as follows: (i) invariance
under even permutations of the columns; and (ii) a possible
sign change under odd permutations of the columns, the
(23) operation being

" V2 1.0 Y
a; a a;
MKy Ty MaKs/ s
"1 V3 1ERY
=| & a as
MK1L Tk MK/ s

Xy v2rsrHmmamsHewonst} (3.3)

The sign is the same for all such interchanges. Table I11I gives
the tabulation of the 3jm symbols of S,DS, XS, . The
group triad is used as a header. Each subsequent entry gives
the three allowed subgroup irrep labels, 77«, and the corre-
sponding algebraic formula.

IV. METHOD OF CALCULATION

The building-up method used for the caiculation of the
6j and 3jm symbols (see Refs. 6, 14, and 15 for detailed ac-
counts) takes advantage of the “phase freedom” that occurs
within the Racah—Wigner algebra and that follows from
Schur’s lemmas. The phase freedom describes transforma-
tions in the product and branching multiplicity spaces. In
the multiplicity-free case this phase freedom reduces to a
phase, hence the origin of the term. In the present calcula-
tion the symmetric group properties provide simplifications
within the Racah-Wigner algebra. In particular all irreps
are real and orthogonal. Therefore the 1j phase {y} is always

+ 1, and the A-matrix and 2jm symbol, which describe the
complex conjugation symmetry of 6j and 3jm symbols can
always be chosen to be the unit matrix

Yy 7
A (7,17/27,3)'1" = 6”’ ’ a’ a = aa'a . (4.1)
LY LY

In our calculation no nonsimple phase irreps occur; the first
aretheirreps (21) = [f— 3,2,1],/>6. As a consequence the
permutation matrix appropriate to the reordering of coupled
products can be chosen diagonal:
{eyirars}, =&,
¢ an even permutation ,
vy}, = {nvayar} 67,
7 an odd permutation ,

(4.2)

where {y,y,7,r} takes the values + 1. The transposition
matrix associated with the transposition of the subgroup ir-
rep labels of S, and S, can also be chosen to be diagonal

T(Y"']K)a’a = (7’“77K)5°la ’ (43)
where (yan«) is a sign factor + 1 (see Sec. V).
The 6/ and 3jm symbols of the symmetric group can now

be calculated recursively by building up from the trivial 6;
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TABLE I1L The S,DS;, X5, 3jm symbols.

1 1 1 0
0X0 0X0 0X0 00 S S S
\ Fno—ans A A
ox1 0x1 0x0 00 + SHh-1)
F-DU-25
ox1 0x1 0x1 00 + [z Dr—-2)
F-DU-2f
1x0 1x0 0x0 00 - Kh=1f
F—-DE-2)f
1x0 1X0 1x0 00 4+ [ML=DU-2)
f-DU-2
2 1 1 0
0x0 00 0X0 00 + AW -DE -1
F-DUE-D(-DAL
0x0 0x1 0x1 00 _ »h=1
= DU=-)( -3,
0x0 1x0 1x0 00 - »whh-1
- DUE=-D( -3
0x1 0x1 0x0 00 + [=Dh=2)
=2 -3)f
ox1 ox1 ox1 00 _ $rih-1)
SE=D(-3)f
1x0 1x0 0x0 00 _ =D —2)
F=D¢-3A4
1x0 1x0 1x0 00 _ -0
=D -3
1x1 1x0 0x1 00 4 [i=Dr=1
fS-3)
0x2 0x1 0x1 00 + [z
Af=3)
2x0 1x0 10 00 4+ A=
-3
2 2 1 0
4/-1
0x0 0x0 0x0 00 - -
\/ﬂf—Z)(f—3)(f—4)f1fz i=sl
0x1 0x0 0x1 00 + 2h=1(r=2)
== (-0f
ox1 0x1 0x0 00 + f—1 2 i +2
\/f(f—n(f—zxf—a)(f—«t)f,fz [¥i +ff= i -2+ 2]
fi—1
ox1 0x1 0x1 00 + 2 _af _ 4
\/(f—l)(f—Z)(f—-3)(f—4)f2(f2—2) e /2 — 4 — 4+ 4]
1x0 0X0 1x0 00 + 20, =h—-1)
- -NU—-bf,
fi—1
10 1x0 0x0 00 - L 22 —f1+2-2
\/mr_1)(}»_2)(),_3)(f_4)1,f2 [2/: +AL—f1 + 2 - 2]
fi—1 2
1x0 1x0 1x0 00 + —4f, — 4 4
\/(f—l)(f—Z)(f—3)(f—4)f,(f1—2) fa S — 4 =4+ 4]
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TABLE III. (Continued.)

1x1

1x1

1x1

1x1

1x1

0x2

0x2

0x2

2x0

2x0

2x0
12
ox1

ox1

1X0

1x0

1x1

ox1

1x0

12

0x1

0x1

0x1

0x1

ox1

1x0

0x1 1x0 00
1x0 0x1 00
1x1 0x0 00
1x1 0x1 00
1x1 1x0 00
ox1 0x1 00
0x2 ox0 00
0x2 0x1 00
1Xx0 1x0 00
2X0 0x0 00
2x0 1x0 00
1 1 0
ox1 ox0 00
0x1 0x1
1x0 0x0
1x0 1x0
1x0 0x1
ox1 0x1 00
1x0 1x0 00
2 1 0
0xo0 ox1 00
0x1 0x0 00
0x1 0x1 00
1x1 1x0 00
0x2 0x1 00
0x0 1x0 00

_ LD
F-nu-3¢-4

_ =D G-
F-DE=-HU-4)

+ [TDE=DGE=D

fF=DE=-HU-DNL

. [TG-DE-DG-2
F- D= )G

=i -Dh-23H-1
=D -3 -8f

F-DU-3-H1—-2)
20-2£5—3)
SF-DH=-3)-4

. [CDG—0G—3G—D
F-DU= DO -2

N [0 =3,
F-DU-3)-HU-2)
_ 2= =3
AF-DG—DG—4

=DUh-DU=3h=-%
-DU-I-Hh—-2)

+

<+

+

fHi—1
-n¢-2)

0

- hf
F-DU-2)

0

[ ER))
F-nu-2)

H-DHK,-2)
f-D-2)

Gi-D¢—2)
F-nu-2)

+

[
—_

+

+

2h—1)
SF-(-3)

+ G-DF=2
(- DF-D¢F-3)f,

F—D¢-D

F-DU=3)

Yi-DAG-D
ff= D=3,

_ LU, —3)
SF-H-3)

2(—1)
F=-2)(f-3)

-+

+
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TABLE I11. (Continued.)

1X0 1X0
1Xx0 1x0
1X0 Ix1
1X0 2X0
Ix1 0x1
I1x1 1X0
1x1 1x1
1x1 1x1
1x1 1x1
0x1? o0x1
0x1? 0x2
12x0 1x0
12x0 2x0
12 12
ox1 ox1
0x1 ox1
1X0 1x0
1x0 1Xx0
1x1 ox1
1x1 1X0
1x1 1x1
1x1 1x1
1x1 1x1
ox1? ox1

0x0

1x0

0x1

1x0

1x0

0x1

0x0

0x1

1x0

0x1

0x1

1x0

1x0

0x0

0x1

0x0

1x0

1X0

0x1

0Xx0

0x1

1x0

ox1

-Hh=2)
(f— 1)(f PG

F=2¢ -1

SE=D(=3)

. [fG—DG-D

DY
7=

=D~

Kh-DH-Dr-2)
F-DU=D(-If

. [G=DG=DE=D
F-DU-DF-3f

_ =D
F-DU-Wf

G- -1 —2)

F-DUE=-3)f,
+ B-DU=2(h-2)

U—-DU-3h

L, -1
-DE-¢-3)

-DE-3)
—1)(f 3)

(i —Df
-DE-2(¢-3
G-DE -3
-DU-3

+

- (.- D —
\/(f—l)(f—Z)(f—3)ffz Gh=Al

_ Sfh -1 —2)
F-DE=-D¢-3f

i— D
2, —
\/(f—l)(f DTEETARL

S =-DUi—-2)
F=-DHU-2¢-3Ah

K-DAHL-1)
F=DE=DU=3

, [FG=DG-1
F-DHE-¢ -3
_ i-neK-Dn _
\/(f—l)(f—Z)(f—3) Uim s

_\/f(ﬁ—l)(fz—n(fz—m

F-DE-D0-3),

_ AN
U=-DUE-D¢-f

_ H=DH-2)
F=-HE-2¢-3)1%
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TABLE I11. (Continued.)

0x1? ox1? 0x0 00
0x1? 0x1? ox1 00
12x0 1X0 1x0 00
12x0 1’x0 0x0 00
12x0 12x0 1x0 00

_ %-Dh-2)
F-DU-D¢-3L

E-DGE=00-3)

N\ D U-D0- %

 [[G-DC¢-h
F-DE-(¢ -3,

B )

F-DU-D( -3
. [fE=DG—DG—
v

-D¢-2)¢-IAh

and 3jm symbols and incorporating the symmetries given
above. The basic procedure follows that used in numeric'®2°
and algebraic®?*' examples. Therefore we give a brief outline
only. Phase freedom still exists subject to certain restrictions
imposed by the above choices (4.1)-(4.3). Such freedom
allows a choice of the sign or phase or even magnitude of
certain 6j and 3jm symbols subject only to the unitarity con-
ditions. Linear equations in the unknown 6j and 3jm sym-
bols, which have no phase freedom, are then generated by
identities in the Racah—Wigner algebra, for example the Ra-
cah backcoupling relation, the Biedenharn~Elliott sum rule
and the Wigner relation. Since the 6/ symbols are indepen-
dent of the subgroup basis labels these are calculated first. A
small set of 6/ symbols for both group and subgroup are
required in the Wigner relation to calculate the 3jm symbols.

V. THE TRANSPOSITION SYMMETRY

As mentioned earlier, the transposition symmetry arises
as a consequence of being able to embed the two isomorphic
direct product groups Sy, XS, and Sy, XS, inS;. This corre-
spondence is an inner automorphism of S, and an outer au-
tomorphism for the subgroups. By requiring that the matrix
representations of these two subgroups be identical, the sym-
metry can be described by a matrix T(y,m«), which is in-
dexed by only the branching multiplicity label a. This ma-
trix, which we call the transposition matrix, can be chosen,
within the hierarchy of symmetries, to be diagonal.?? In the
particular case of the symmetric groups the diagonal entries,
called transposition phases, satisfy

(vaxn) = (yane)* = (yank) = 1, (5.1)
and are chosen such that they are rank independent. In the
special case when 7) = «, the phases are fixed by the charac-
ter theory. Replacing the reduced notation labels by the
standard labels we have

ifz @ 2 contains

the ath occurrence of A,

— 1, ifu ® 1%contains

the ath occurrence of 4,
(5.2)

where ® denotes the Schur function operation of outer
plethysm.?® Even though the branchings in our calculation

+1,

(yanm) = (Aapp) =

909 J. Math. Phys., Vol. 27, No. 4, April 1986

are multiplicity-free, the values of the transposition phases
can have a striking effect on the algebraic form of some 3jm
symbols as we will show shortly.

The transposition symmetry thus relates 3jm symbols of
8, DS, XS, and those of Sy DS, XS, (we distinguish the
latter by a prime):

"1 Y2 1Z0Y "1 Y2 73\
a, a, as =l 4 a, a,
MKy MoKy M3/ s KM KNy K3Ws/s

X (¥1a171K61) (Y202112K2) (V38373K3) (5.3)
If f, = £, the pair of 3jm symbols belong to the same group—
subgroup chain and with %, =«;, i = 1,2,3, the two 3jm
symbols are identical. In such cases the product of transposi-
tion phases in (5.3) may be — 1. The 3jm symbol must then
vanish. Such vanishings force the appearance of the factor
(f; —/>) in the algebraic formula of the 3jm symbol. This
can be seen with

12 1 1y\°
0 0 0 , (5.4)
IX1 1IX1 1X1/oo

where the transposition phases are
(1?0 1Xx1)=—1and (10 1X1)= +1,

and the S, and S, subgroup labels have been separated by
(0 X "!

VI. THE TRANSPOSE CONJUGATE SYMMETRY

As noted by several authors,??*?* the one-dimensional
irreps of a group lead to symmetries in the Racah—Wigner
algebra. For the symmetric groups, the pseudoscalar irrep
{0) = [V] provides such a symmetry. In this section we
follow to a large degree the work of Ford and Butler® but
note that for the symmetric groups they consider only the
embedding S, DS, | XS). Their results are extended to the
general case S, DSy, XSy, (see Ref. 26), but for our present
purposes we give only results that pertain to nonsimple
phase irreps and multiplicity-free products and branchings.
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To describe the transpose conjugate (or “tilde”’) sym-
metry we define two special matrices, the A-matrices,

0 7 v
A rr _ , 1/2 [ 3 3 ] ,
(r17273) [71.72l Vi 12 Florm

(6.1)
}, 172 O T/ 7/ °
A(YKe) gg = I— 0 d a ,
" 00 7« ux/oo

which can be seen to be similar to the trivial 6/ and 3jm
symbol, although the one-dimensional irrep is placed to the
far left as opposed to the right for the trivial 6j and 3jm. This
is because the power of (0), f— 1, is the largest of all the Sy
irreps and the ordering of the 6/ and 3jm symbols in the
tables is based on the ordering of the triads. For our present
calculation the A-matrices take a simple form

A(yyv27)® = {~ 7172730},
Ay, 1K) 00 = (~,Y07K) .

(6.2)

The symmetries of the 67 and 3jm symbols imply the follow-
ing constraints on the A-phases {~,y,7,7,0} and

(~,707mK):
(~nry0) = 1,
{~ 7 172750H ~ 7172750}

= {7’17’27’30}{?’17’27’30}{67"3?’30} )
{~:7’17~’37~’20} = {~.117730},
(~Y0mk) = £ 1,
(~,70m) (~,y0mi) = {0770 HO770}HOK0} ,
(~ Y0k (~,y0K) = (P077K) (y01K) .
Unlike the 3/ phase, the A-phase { ~%,7,¥,0} is in general
dependent on the order of the irrep arguments. Using Eqs.
(4.1) and (5.1) of Ref. 25 and the above, we obtain the

transpose conjugate symmetry of the multiplicity-free 6/ and
3jm symbols

{ri 2 75]
7~’1 7’2 73 0000
_ [y; Y2 3
Y1 V273
X {~71 ¥s¥:0H ~ %5 v17:0H ~ .7 72110}

x{y v2¥:0H» v5 7’30}{7’1?’2 750},

71 V2 75 \°
0 0 0
My K2 T3Ks/ o0
" Y2 73 \°
=1 0 0 0
Ky 7Ky 15K

X (~,#1017:K1) (~,¥.017,4,)
X{~ ,7’37’17’20}{ ~ 9"]37717720}{ ~ ’KBKIKZO} .

(6.3)

] {671710}{6727’20}{67’37’30}

(64)

00

(6.5)

910 J. Math. Phys., Vol. 27, No. 4, April 1986

TABLE IV. The A-phase constraints.

Phase constraints for f= 4

{~1110}= —{0i10}

{~2110}= —{0110}

{~12110}= —~ {6110}

{~,12210{~,1210}= —{1210}
{~11220H{~,11120{~,1210}= + {0220}
{~21210{~,111?0} = —1
{~21120H{~11120}= —1
{~121210H{~,11120}= — {01100 12120}
{~112120} = + {012 1201 110}
{~1P1120H{~,121210H{~,112120} = — {0110}
{~, 1212120} = — {01212 0{i2210}{1 1220}

Phase constraint for f= 5

{~1212120} ={01? 120}

Phase constraints for all f

{~,0000}= + {0000} = +1
{~1100}={~,1010}={~,0110}= +{0110}
{~2200}={~,2020}={~,0220}= +{0220}
{~ 121200} = {~,120120} = {~,012120} = + {0 12120}
(~,0000) = + 1 for all (fif;)

— 1for (fif7) = (1,2)

+ Lfor (fif2) = (1,3),(2,2)
(~,2000)(~,1000) = — {~,1210}, for (f;f;) = (2,2)
(~,2001)(~,1000) = —{~1210},for (fif3) = (1,3)
(~2011)(~,2000) = — 1 for (fify) = (2,2)

(~12001)(~,1001)= +{~,1 1210} for (fif3) = (1,2), (1,3),
(2,2)

(~,12011)(~,1010) = +{~,11210}, for (fif;) = (2,2)
(~,12001%) 13y (~,1°001) (13, = 4 (~,1°001) 43, (~1001),,

The transposition symmetry gives the following constraint
(~70x7) (~,y 0 K) = (0000) (70 7K) (¥ O ) for all (fify).

(~,1001)(~,1000) =

We call the 6j and 3jm symbols appearing on the left-hand
side as being “tilded.” By using the row-flip symmetry of the
6j symbol to place one of the four triads at the top, four
different tilded 6/ symbols can be obtained from just one 6/
symbol. Similarly employing the even permutational sym-
metry of the 3jm symbol, three different tilded 3jm symbols
can be obtained from the one 3jm symbol. Such tilded sym-
bols have the same f dependence though a sign difference
may occur. Thus Eqs. (6.4) and (6.5) can be used to expand
on the size of Tables II and III, respectively. Since we have
considered only irreps up to power 2, the four tilded 6/ sym-
bols and the three tilded 3jm symbols are always distinct for
f>6 from their “untilded” 6 or 3jm symbols. However for
f<6, the tilded symbol may be equivalent to a symbol al-
ready listed in the table. During the calculation of the listed
6j and 3jm symbols, phase freedoms were made such that
phase consistencies are achieved between such “tilde” and
“untilde” & and 3jm symbols. These considerations lead to
constraints placed on the sign of the A-phases for f<6.
These phase constraints are presented in Table IV. We note
that some A-phases are f~-dependent, for example,
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{~,0110} = {0110},
but for

f=3, {0110} ={121210}= —1,
and

f=2, {0110} ={121%0} = +1.

In general it is not possible to make phase choices such that
the A-phases are findependent.

V. THE SCHUR-WEYL DUALITY SYMMETRY

Many authors have studied the connection between the
symmetric groups and the unitary groups. For a review and
the terminology used in this section, we refer the reader to
Refs. 27 and 28. The important results established from this
connection, which we call the Schur-Weyl duality, are rela-
tions between certain transformation factors of the symmet-
ric groups and those of the unitary groups. Two relations
that concern us here can be summarized as follows: (i) Sy
recoupling factor~U, , . resubduction factor, and (ii)
S ., coupling factor ~U, , coupling factor. The full
expression of these relations is contained in Eqgs. (4.4) and
(4.10) of Ref. 28. In the multiplicity-free cases these rela-
tions reduce to the following (here we assume the use of
standard partition labels):

(4 04,455(04,45) |4 041302142043 5 s
= (41(A43)043,04 [ (A4,)04,,,45,04 )f

XDP|P23 (/i')/1’1123)‘Dp2p3 (123’2’21'3)‘

XDPlzPa (’?"A'IZ/IB)D;:.p2 (AAid2) (7.1)
U
(4 Lo uv
00 0
1231221410 A
00 0
UPth /11/{2 /11/12
¥ ) Ads | A,
00 0
= By, | A
00 0
S.Sp, 1214 uv

X‘Dp,pz (/‘l"/‘l’ WZ) ‘Dplﬂz (V’Vlv2) ‘DPI (ﬂ 1V1/{1 ) *
XD, (p3v24,)*D, (uv,A)D, , (A, A4),  (7.2)

J

where D_ (), called duality factors, are in general indexed
by multiplicity labels and relate symmetric group and uni-
tary group phase freedoms. Moreover the duality factors
D,, (A,A,4,) are zero unless (4,4,4r) forms a triad for S,
and (dad,A,) forms a ket branching for U,DU, X U,,.
Similarly D, (uv,A) is zero unless (Aauv) forms a ket
branching for S, DS, XS, and (uvA *r) formsatriadin U, .
When these conditions are satisfied, the duality factors are
elements of a unitary matrix, which in the multiplicity-free
case reduces to a phase. This phase can be chosen to be unity.
Inspecting Eqgs. (7.1) and (7.2) we see that the left-hand
side is independent of the symmetric group while the sym-
metric group recoupling and coupling factors are clearly in-
dependent of the unitary group. This point makes these rela-
tions powerful as a means of determining the unitary group
transformation factors that appearin (7.1) and (7.2). Using
now the relation between the recoupling and coupling fac-
tors with the more symmetrical 6j and 3jm symbols, respec-
tively, the unitary group transformation factors can be writ-
ten

P1P2P3

(A 04,4,3(04,43) |4 04,,(04,4,)45)
A A, /11]
0000

—_ 172
~ Wkl |y 52

X {A4,34,0} {A,42:4,0},, (7.3)

e A* u v 0

0 0 0
v,u, \ATA%Y ps viv2/ oo

S /A A A
= 0 0 0 0
s.s, \HV HV A,
[ i, Ay el 172
lels vl 141,

o Up i

v
HV2 /00 u,U,

(7.4)

(the unity choice for the duality factors is assumed). Com-
bining the algebraic formulas for the symmetric group 6j and
3jm symbols with Eqs. (7.3) and (7.4), we can then obtain
algebraic expressions for certain unitary group resubduction
factors and 3jm symbols that are labeled by irreps {/},
{r— 1,1}, {f— 2,2}, and {f— 2,1%}. In addition the trans-
pose conjugate symmetry extends the list of these unitary
group transformation factors to include those with labels
{V}, {2,V-2}, {2,2,V~*}, and {3,V 3}. We illustrate
this method in the following way:

[f- 292]

— [[f_ 2)12]
s F—2,2]

[f—1,1] 0000

[f_ 191]

Y- 2
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Y {f—2,2}+ {f, = 1,1} {f, — 1,1} 0

0 0 0
U‘,lU‘,2 {f— 292}*X{f— 111}* {fl - I,I}X{fl} {fz_ lsI}X{fz} 00
K F-22] F—22] -1\ °
- 0 0 0
S;. Sy, [fl - 1,1])([f2— 1’1] [fl_ laI]X[fz” 1’1] [fl]x[fz] 00
U,
? {f‘—2y2}
v 0 [ [f =221, V=223, [ — L1}, ]
uu, \ = 12} x{f— 1,1} If= L1, Lf = 1,11, {f—22},
U, —2,
_ . [DGDE . ) v-22
SE=D (=) - Dfif, 2-(fi—-D(KL—-1) o0, \U— 12}~ 1,1}

1

x\/(pl+f—3)! =3 et f-1 =) (=D

=20 7 =02 (-t 1 -3 (F-3)p

U {f_2’2}
= 0 i —1f) - f=2) @S =N @+ =2 (p—2)!
uu, \{f—12Hf- 1,1} F=Hpfifs- 21 (=22 (=2 (@+f=-3!

P2

Viil. CONCLUDING REMARKS presenting tables but also in showing the explicit rank depen-
dence and vanishing of the 6/ and 3jm symbols. In some

In presenting the tables of the symmetric group 6/ and  circumstances a partial understanding of these vanishings
3jm symbols, we have demonstrated that an algebraic ap-  can be given and may be connected to either the transposi-
proach to their determination can be performed. Clearly  tion symmetry or the transpose conjugate symmetry or even
such an approach is preferrable not only in saving space in  the modification rules of the irrep labels themselves as sug-

TABLE V. The S50 45 embedding. We use the f-independent notation throughout.

—
»

Branching Rules
010 1 11 2 12 1?13 o+ 12
6 1 0 T 41 2 4 2
Note that 12 is self-conjugate in Ss, i.e., 1212 Butler’s notation for the icosahedral group irreps differs:
Jindependent 0 1 2 12, 12
Butler 0 3 2 1 1
3jm Symbols
(o 0 0)° \ (2 2 2)° o (12 2 07
000b- "1 22 2" 2 o2 2,° 77
(1 10)0 ) (222)° +1 (12 120)° 1
110" 12 247 212 o), 13
11 1)0 1?1 l)"_ 1 (12 2 0)" 1
(1 1 1)~ H! 2 o1 1),- %7 2 12 o,- 17
2 1 1y 1211)0 1 (12121)0 1
(2 1 1)0=+1 2 o1 1),= %7 o1 1,,- 77

[$3
~
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(N
IN
o N
—
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) ©
Ii
+
N’u—

=1

I
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T Sz 292
e © o o
I Il
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+
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oo
NN
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gestive of the determination of the dimension formulas. Such
symmetry considerations may give the algebraic form of the
symmetric group €/ and 3jm symbols given the irrep label
constituents. However, more study is required to fully un-
derstand and draw out these connections.

Although our calculation has only considered nonsim-
ple phase irreps and multiplicity-free 6/ and 3jm symbols, the
method employed can be applied to the more general cases as
exemplified by the numerical examples'’2° and the algebra-
ic example of the unitary groups.?'?> With a table of such
symmetric group 6/ and 3jm symbols, the relationship via
the Schur-Weyl duality with the unitary groups can be ex-
plored further, as can the relationship with other compact
continuous groups.?*

The tables have been checked with numerical tables pro-
duced by Butler.? The symmetric group S, is isomorphic to
the tetrahedral group T, while S5 contains the alternating
group A5, which is isomorphic to the icosahedral group. Our
6j formulas agree with the corresponding 6/ symbols to with-
in phase choices. In the S5 case, the 6j symbols of S5 and
those of A5 are related by the Wigner relation (see Butler®,
Eq. 3.3.29), which requires some S;DA45 3jm symbols.
These are given in Table V. The group reduction 7, DC,,,
which is isomorphic to S, D.5; XS, was used to give a check
of the 3jm formulas.
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Two simple prescriptions are given for obtaining sets of orthogonal bases for semisimple Lie

algebras. The first method allows one to obtain the irreducible representations of all the simple Lie
algebras, starting from SU(2) and Dynkin’s method for constructing representations from simple
roots and highest weights. The second method relates algebras of the same rank. Several examples
are discussed. A method is given for listing the bases that may be obtained from the prescriptions.

I. INTRODUCTION

The purpose of this paper is to present two straightfor-
ward prescriptions for constructing orthogonal bases for
complex semisimple Lie algebras. One of the goals is to pro-
vide tools useful for treating the exceptional groups Eg, E,,
E,, F,, and G,; recent developments in string theory imply
that some of these groups may be important in particle the-
ory. Different bases are useful for different models, or differ-
ent symmetry-breaking schemes. Therefore, our aim is not
to exhibit two or three bases for each group, but rather to
present prescriptions that may be used to construct bases
with different desired properties.

The most successful general procedure for constructing
irreducible representations of simple Lie algebras is based on
techniques introduced by Dynkin in the 1950’s.! If these
techniques are used with a specific orthogonal basis, the ease
of calculation depends not only on the general nature of the
basis but also on the choice of simple roots, which depends
on the definition of positivity. One advantage of our proce-
dure is that the simple root sets are easy to handle.

The first prescription is developed and illustrated in
Secs. II-V. The method is constructive; one may obtain the
roots and representations of all simple Lie algebras with no
prior knowledge except the properties of SU(2) and Dyn-
kin’s method for constructing representations from simple
roots. The second prescription is developed and illustrated in
Sec. VI. In Sec. VII methods are given for listing all the bases
that may be constructed from these prescriptions. Of course
some of the resulting bases are familiar. However, some are
not familiar.

Dynkin introduced two nonorthogonal bases. These are
not needed to apply the prescriptions of this paper. However,
they are used to prove the validity of various parts of the
construction procedures.

Il. THE EXTENSION PRESCRIPTION

We give here a prescription for extending an orthogonal
basis of a semisimple Lie algebra of rank # to a basis for an
algebra of rank n + 1. The terms and concepts used may be
found in standard references.>” One starts with any orthog-
onal basis for the original algebra H. Positivity is defined by
the criterion that a weight vector is positive if and only if its
first (starting from the left) nonzero component is positive.
The roots are the weights of the adjoint representation. A
simple root is a positive root that cannot be written as a sum
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of positive roots. One determines the z linearly independent
simple roots of H.

Next one considers some irreducible representation of H
other than the adjoint, and finds the most negative weight
vector W_. If the ratio of the length of W _ to the relevant
root length L satisfies the inequality

|W_/L | < (1/M)"?, (2.1)

where M is a positive integer, then root systems for at least M
different algebras of rank # + 1 may be constructed. If H is
simple the relevant root length is the length of the shortest
simple root of H that is not perpendicular to W _. The defini-
tion of L for semisimple (but not simple) algebras is post-
poned to Sec. IV. A new orthogonal dimension is added to
the original » dimensions; the component of the new dimen-
sion is placed on the extreme left. The roots of H have zero
components in the new dimension. A new root is formed by
placing the components of W _ in positions 2 to n + 1, and
adding to this vector a positive first component of magnitude
[(1/M)L? — w2 1Y% If M> 1, one may follow this pre-
scription for M and also for all smaller positive integers. The
new set of 7 4 1 vectors are the simple roots for a Lie algebra
of rank 7 + 1, using the same definition of positivity.

If M > 1, the above procedure is called the “short-root
procedure.” An alternate, ‘“long-root procedure” is to deter-
mine the new root as discussed above, and then multiply it by
M. This procedure also generates a Lie algebra, generally
different from that obtained by the short-root procedure.

Before demonstrating the validity of these rules, we il-
lustrate the method for the case where H is SU(2). In order
to be consistent throughout the paper we always normalize
so that the longest root of H is of length 2, even though this
is not the natural normalization for the SU(2) case. The
simple root (state of j = j, = 1) is y2. Only spin-0 and spin-}
states are short enough to be used in the extension. Clearly,
the spin-0 representation may be used to generate
SU(2) e SU(2). If the spin-} representation is used,
W_ =2( —}). This satisfies Eq. (2.1) withM = 1,2, 0r 3.
Since there are only two roots in the extended system, the
short- and long-root procedures are equivalent, s0 we con-
sider only the short-root procedure. The extended root sys-
tems of M = 1,2, and 3 are, respectively,

J2{0 1}, v2{o1}, 2{01},
VD2 =3}, V243 -1}, V2{y)? -4k
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If one classifies these three pairs of vectors by the symbol
(M /2,8), where M '/ is the length ratio and 6 the angle

between the vectors, the results are (1, 120°), (2, 135%), and

(+/3, 150°). These are the magnitude and angle relations re-
quired for simple root sets of the algebras SU(3), B,, and G,
respectively.**

Next, we will prove that the short-root construction
procedure is always valid. (Extending the proof to the long-
root case is not difficult.) We call two roots “connected” if
they are not perpendicular. Dynkin’s classification theorem
may be stated in the following way: a set of vectors R, may be
taken as the simple roots for a semisimple Lie algebra if and
only if the following three conditions are satisfied.

(i) The vectors are linearly independent.

If two vectors R, and R, are connected, and if R, is not
longer than R, then

(ii) (R3/R?) =1/M,
where M is a positive integer, and

(iii) R, - R, = — R ?}/2.

In practice, M < 4, because if M > 4, condition (iii) is impos-
sible, and if M = 4 the vectors are linearly dependent.® The
phrase “may be taken as the simple roots” needs clarifica-
tion. One may have a criterion for positivity such that the set
of vectors are not all positive. One could still use these vec-
tors to generate a Lie algebra, but the simple roots would not
be the original roots. However, one can always redefine posi-
tivity in such a way that the original vectors are all positive,
in which case they are the simple roots.

The construction is such that condition (ii) is satisfied
explicitly. Furthermore, since the added root is the only one
with a component in the added dimension, linear indepen-
dence of the original roots guarantees the linear indepen-
dence of the extended root set. Thus the validity demonstra-
tion reduces to showing that condition (iii) is satisfied by the
new root. The two nonorthogonal bases of Dynkin will be
used for this purpose. We list below some properties of these
bases.”

The components a@; of a vector (@) in the dual basis are
defined by writing (a) as a linear combination of the simple
roots R;, i.e.,

- 2
a=Za,-FRi.

1t is seen from this equation that the dual-basis components
of a simple root R; are

(R)): =8,,(R}/2). (2.3)
The components of the vector (@) in the Dynkin basis are

denoted by a,. They may be determined from the dual com-
ponents by

(2.2)

_ 2
aj = Z aiFAU, (24)
where A is the Cartan matrix, with elements
A;; =12R, -Rj/R}. (2.5)

Since the two bases are dual to each other, a dot product is
written most simply by expanding one vector in each basis,
ie.,
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a-b=Yab,. (2.6)
Dynkin has shown that the indices a; for all weights in all
irreducible representations (irreps) are integers. The Dyn-
kin indices of the most positive weight W of an irrep are
non-negative integers; these are used to denote the represen-
tation. Thus, from Eqgs. (2.6) and (2.3),

2

— R?
W, R, =Ea,.(Rj),. =aj—2i. 2.7
The basic irreps ¢, are those with Dynkin indices,
ai(W+,k) =6ik’ (2.8)

where W ,, the highest weight of ¢,, is called a basic
weight. For the basic weights, Eq. (2.7) reduces to

W, . R =8, (R/2). (2.9)

This is called the basic weight equation in later sections.
The conjugate of a weight vector is the negative of the
vector. The irrep conjugate to ¥ (denoted by ¥°) is such that

W—(¢) = - W+(¢C)s (2.10)

where W _ is the most negative weight of the representation.
We now return to the justification of the extension pro-
cedure. If the algebra H is simple it can be shown that the
only irreps with sufficiently short W_ to satisfy Eq. (2.1)
are the basic irreps; if H is semisimple (Sec. IV) the only
irreps with sufficiently short W _ are direct products of basic
irreps. In either case the Dynkin indices are all zero or one.
The Dynkin indices of the conjugate representation must
also be zero or one. It follows from Eq. (2.10) that the Dyn-
kin components of W _ are all zero or minus one. The W _ is
connected to a root R; only if the index a; of W_ is minus
one, in which case Eqgs. (2.6) and (2.3) lead to the result

W_.R,= —R22.

If W_ is extended by the short-root procedure to an orthogo-
nal dimension, the dot product is unchanged and the new
root is not longer than the connecting old root, so condition
(iii) is satisfied.

The simple roots of H are positive. By construction, the
new root is positive. Hence, the new root set are the simple
roots of a new algebra, with an unchanged definition of posi-
tivity. This completes the demonstration.

lll. OUTLINE OF SOME EXTENSIONS OF SIMPLE
ALGEBRAS

In this section we outline the construction of some ex-
tension bases. Two specific examples are discussed in detail
in Sec. V. Many authors have listed sets of useful orthogonal
bases for Lie algebras.? If positivity is defined appropriately,
some of these coincide with bases obtainable from the pre-
scriptions of this paper.

For convenience we list the Dynkin diagrams for the
four infinite Cartan classes and the five exceptional simple
algebras in Fig. 1. The root-numbering conventions of this
paper are shown in the figure.

We introduce some convenient terminology. The length
of an irrep is defined as the length of the longest weights in
the representation. (This is the length of W, or W_.) A
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FIG. 1. Dynkin diagrams for simple Lie algebras. Black circles represent
shorter roots.

short irrep is one that is shorter than the relevant root length.
An equal-magnitude representation is one in which all
weights have the same length. An equal-magnitude algebra
is one for which all nonzero roots have the same length.

A. Extending SU(n)

Since every simple Lie algebra except F, may be ob-
tained from a one-root extension of some SU(n), SU(n)
bases are particularly useful. We list here some basic proper-
ties of SU(n) quarks. We label specific quarks by the early
letters a,b,¢, etc., and use ¢,7,s, etc. to refer to general quarks.
SU(n) quarks may be defined as a set of n vectors of equal
length in an (» — 1)-dimensional Euclidean space subject to
the conditions that the angles between all quark pairs are the
same, and that the sum of the n different quark vectors is
zero. These conditions determine that the ratio (g - 7)/¢” is
equal to — 1/(n — 1), where g and r are any two different
quarks. If the vector set is normalized so that the nonzero
roots (gF) are of length 2, then the quark and antiquark
lengths and dot products are given by

3.1)

Although the quarks are not orthogonal, Eq. (3.1) is so sim-
ple that it is convenient to write representation weights in
terms of the quarks, using a specific orthogonal basis only
when necessary. From Eq. (3.1), the dot products of quarks
and roots are

q-(gn) =1,
where g,7, and s are any different quarks.

We label the quarks a,b, etc. according to positivity,
with a the most negative quark. The positive roots are those
whose antiquark label is an earlier letter than the quark la-
bel, i.e., (db). The simple roots are those with adjacent let-
ters. The Dynkin diagram is shown in Fig. 2.

F=—=1)/n q.r=—1/n, = —gq.

r-(gr)= —1, s-(gr) =0, (3.2)
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FIG. 2. Some simple SU(») roots and their connections.

A few comments concerning this result are in order.
Positivity may be defined in many different ways. However,
it would not be sufficient to assign the quarks different real
numbers, arbitrary except for the requirement that the sum
of the numbers is zero. If this were done it might occur that
two different nonzero roots had the same positivity, in which
case the definition would not be legitimate. The point of the
result of Fig. 2 is that if the positivity definition is legitimate,
all one needs to know is the ranking of the quarks in order to
determine the simple roots and construct the irreps. The ba-
sic reason for this apparent paradox is that in the construc-
tion procedure, there is no significance to the relative positi-
vity of two weights, unless one may be obtained by adding
one or more simple roots to the other.’

Any irrep with a Dynkin index larger than one has states
containing two or more identical quarks and so is not a short
representation. We may limit attention to the basic irreps,
totally antisymmetric states of quarks, or of antiquarks.
These are all equal-magnitude irreps. The length-squared of
an antisymmetric j-quark state is j(g?) +j(j — 1)(g-r). If
we use Eqs. (3.1) we obtain the result

1| = ¥ _,| = Lj(n —j)/n]""% (3.3)

If the antisymmetric quark state (rs - - - ) contains the rand s
quarks but not the g quark, its dot product with the roots is

(rs---)-(gF) = —1, (3.4)

We number the roots from the left in Fig. 2 and illustrate
this convention by considering the antisymmetric two-quark
and two-antiquark states of SU(5). The highest weights in

these two irreps are (de) and ( ab ). It may be seen from the

basic weight equation, Eq. (2.9), and from Egs. (3.4) that

these are the highest states of ¢, _ , and ¢,, respectively.
We now list the possible extensions of SU(») for n>3.

The relevant root length is V2. Clearly, extending SU(n) by
using the identity representation yields SU(n) ® SU(2). In
future examples we will not consider this obvious type of
extension. If one uses the quark representation ¥, _,, the
lowest state is (a), which connects to the first root of Fig. 2.
Since the quark length is [ (n — 1)/n]'/2, the M values al-
lowed by Eq. (2.1) are 1 and 2. If one uses the M = 1 proce-
dure, the resulting algebra is SU(n + 1). The M = 2 short-
and long-root procedures yield, respectively, B, and C, (see
Ref. 10).

Next we consider the antisymmetric states ¢, and ¥, _,
wherej > 1. We avoid duplication by requiring thatn>2 j. In
thecasej = 2, thelowest state of ¢, _ , is (a@b). Itisseen from
Eq. (3.4) that this connects only with the second root (cb)
of Fig. 2. From Eqgs. (3.3) and (2.1), only M = 1is possible.
The algebra generated is D, [SO(2n)].

The lowest state of ¥, _ 5 is (abc), which connects only
to the third root (d¢) in Fig. 2. The ratio M must be one.
From Eq. (3.3), the lengths of the W_ for SU(6), SU(7),
SU(8), and SU(9) are, respectively,

(rs--+) - (45) =0, etc.
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Y%, ()Y, (3)"/2, and 2. Thus, this type extension of
SU(9) cannot be made; the other three cases yield Eg, E;,
and Ej.

Ifj> 3 and n>2j, the length given by Eq. (3.3) is never
less than /2, so no extension is possible.

B. Extending D,,

We use a standard orthogonal basis for D, [SO(27)].
The nonzero roots have two nonzero components, each of
unit magnitude, and the weights of the vector representation
¥, have one nonzero element, of unit magnitude. We use the
symbols 1,3, and 1,3_ to denote the roots with compo-
nents101-..and10 —1.-.,andthesymbols1 and1_
to denote the vector states 100...and —100-.-. Inthe
basic spinor representations ¢, _ , and ¥,,, each component
is either } or — }; we use only the + and — signs in the
weight symbols. These two irreps are distinguished by the
sign of the product of all the components. We use SO(10) as
an example. It may be shown that the simplerootsare 1,2 _,
2,3.,3,4_,4,5_,and 4,5,. The lowest weights of the
two spinor irrepsare (— — — — 4+ )and (— — —
- —).

The smallest D, that is different from an SU(/) or pro-
duct of SU(/)’s is D,. For any D, with n>4, only M =1
extensions are possible. Extending with the vector represen-
tation yields D, . , in the standard basis and so is not very
useful. For D, D, and D,, the length-squared of a spinor
representation is 3, §, and j, respectively. Extending with
these representations yields the algebras E,, E,, and Ej.

C. Extending 8, withn>2

For B, [SO(2r + 1) ] there is a standard orthogonal ba-
sis that is similar to that of D,,. We illustrate with the specific
case of B,. There are twelve long roots ( +1 +10),
(+10 4+1), and (0 +1 + 1), and six nonzero short
roots (+100), (0 +10),and (00 + 1). The vector rep-
resentation ¢, has one zero weight, and six other weights
that are equal to the six short roots. The eight spinor states
(£14 £4 £ 1) are all in the same irreducible representa-
tion. In the notation of the preceding subsection the simple
rootsof B;are 1,2_,2,3_,and 3,.

For any B, the lowest state of the vector representation
¥, is 1_. Since this connects only with a long root (1,2_),

the relevant root length in Eq. (2.1) isy2,soan M = 1 exten-
sion may be made. This yields B, ., in the standard basis
and so is not very useful. However, this example is interest-
ing because it turns out that the B, — B, ., and C; — F,
cases are the only extensions of simple algebras that may be
made with non-equal-magnitude irreps.

The length-squared of the spinor representation ¢, is
n/4. In the lowest state all components are — }. Since this
connects with the short root, the relevant root length is 1.
Therefore, a 1, extension is possible only with M = 1, and
only when » is 2 or 3. The resulting algebras are C, and F,.

D. Extending exceptional algebras

The lengths of the basic irreps ¥, and ¢ of E are (4)"/2,
where the roots are labeled as in Fig. 1. Extending with one
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of these representations yields E,. The length of the repre-
sentation g of E, is (3)'/2. Extending with this representa-
tion yields E;. There are no short representations (other
than the identity) for E,, F,, and G,. These are not extenda-
ble.

V. EXTENSIONS OF SEMISIMPLE ALGEBRAS

In this section we consider some cases where the original
algebra H is not simple, but is the direct product of simple
constituents. The final algebra G is simple. The extending
(or connecting) representation is a direct product of basic
irreps of each constituent. We must make some rules con-
cerning the relative normalizations of the roots of the differ-
ent constituents, and generalize the definition of Sec. II of
the relevant root length.

No more than one of the constituents may have nonzero
roots of different lengths. If such a constituent is present, the
relevant root length L is the length of the root of this con-
stituent that is connected to the extending representation.
The roots of the other constituents must be taken equalto L.
In this case only the M = 1 procedure is possible; the con-
necting representation is extended to length L.

If all the constituents of H are equal-magnitude alge-
bras, the M = 1 procedure is to set all root lengths equal to

V2 and extend the connecting representation to length 2.
If there are only two constituents, and both are equal-

magnitude algebras, M = 2 procedures may be used in some

cases. One normalizes the roots of one constituent to length

V2, and the roots of the other to unit length. The short-root
procedure may be used if a connecting irrep exists such that
|W_] < 1. One extends W _ to length one. In the long-root
procedure one considers only irreps with Dynkin indices
a; = 28, in the constituent chosen to be short. If the length

of W _ is less than /2, one extends it to length y2. The short-
and long-root procedures are not applicable to exactly the
same set of cases. For example, suppose that one wants to
connect an 4, to an end of an 4, root chain. If 4; is chosen as
the short-root constituent, the length inequality is satisfied
only for the short-root procedure; the final algebra is Cs. If
A, is the long-root constituent, the length inequality is satis-
fied only for the long-root procedure; the final algebra is Bs.

We illustrate with two examples of extending semisim-
ple algebras. .

(A) Extending 4, ® 4, to an exceptional algebra. This
type of extension is illustrated in Fig. 3(a), where X is the
extension root. The extending representation is the direct
product of the antisymmetric two-quark representation of
A, and the one-quark representation of 4,. It is seen from
Eq. (3.3) that an M =1 extension is possible if § + [n/
(n+1)] <2. The n = 1,2,and 3 extensions yield the alge-
bras E,, E,, and E;.

(B) Extending 4(n,) ® A(n,) ® A(n,) by a direct pro-
duct of quark representation. This extension is illustrated in
Fig. 3(b). The M = 1 extension is possible if

ny n, ns
+ + <2.
n+1 n,+1 ny+1
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(a)

O O— X —O—O -
(b)

FIG. 3. Extending some semisimple algebras to simple algebras.

If the range of the », includes zero, all equal-magnitude sim-
ple algebras may be obtained in this way.

V. EXAMPLES OF EXTENSION BASES

Before we construct some specific orthogonal bases, it is
useful to discuss further Dynkin’s nonorthogonal bases,
since these are used to justify some of the construction rules.
If the Dynkin and dual indices (a, and @;) are arranged in
row vectors, then the square matrix G is defined by"’

(5.1)

a=aG. (5.2)
If the diagonal matrix R ? is defined by (R?),; =6,;R},
where R, is a simple root, then it is seen from Eqs. (2.4) and
(5.1) that

a=aG "},

G '=2(R*»74, (5.3)
so that

G=A4"'Y(R?*2). (54)
It follows from Eqs. (2.5) and (5.3) that G ~' (and hence G)
is symmetric.

Since the Dynkin indices of an irrep refer to the highest
weight, it is seen from Eqgs. (2.6) and (5.2) that the length-
squared of an irrep is

W =Yaae =73 a,Ga,.
{ ij

For the basic representation ¥,,4a; = §,, so the length-
squared is
[ |> = W2 & = G- (5.6)

We use the symbols 4, to denote the components of a
vector when written in terms of the simple roots, i.e.,

a=Y &R,

It is seen from Eq. (2.2) that the relation between this root
basis and the dual basis is

(5.5)

(5.7
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4/3 5/3 2 4/3 2/3

FIG. 4. Two rows of the 4 ~' matrix for E,.

a, =a,(2/R?). (5.8)
It is seen from Eqs. (2.4) and (5.8) that the Dynkin basis is

related to the root basis by a; = 2,a,4,; or, in matrix nota-
tion,

a=ad, (5.9)
a=ad " (5.10)

From the symmetry of G and Egs. (5.4), conjugate elements
of A ! are related by

(A _l)ij/(A —l)ji=R,?'/Rj2. (511)

A row of 4 ~' may be calculated quickly, because the
allowed root dot products are such that 4 is very simple. It is
seen from Egs. (5.9) and (2.5) that one may calculate the 4,
of the basic weight W, , from the following prescription.
One sets some convenient d; equal to an arbitrary positive
value. One then assigns values to the other root basis compo-
nents so that each 4; (for i#k) is equal to its stability val-
ue.'? This is half the sum of the &; of all roots connected to it,
with one exception. If the root / is connected to a longer root
J, one multiplies &; by M (the square of the ratio of root
lengths) when computing the stability value of &, One then
renormalizes all the ; so that a, exceeds its stability value by
4. This js illustrated in Fig. 4. The upper and lower numbers
refer to the basic weights associated with the roots 4 and D,
respectively.

Since the construction yields the basic weight W, ,, it
is seen from Eq. (5.10) that the components are the k row of
the4 ~'matrix. Usually it is easier to carry out this construc-
tion than to determine 4 ~! from tables. Furthermore, the
construction leads to a generalization (used in Sec. VII) that
is not obtainable from tables.

We demonstrate the simplicity of the extension proce-
dure by showing that if one knows the basic weights of the
unextended algebra H, very little extra effort is needed to
obtain the basic weights of the extended algebra.

We take as examples the 45[SU(6) } and D; extensions
to E,, shown in Fig. 5. The roots 4 and D are the new roots in
these two cases. The first expressions by each circle are the
extended A root set, discussed in Sec. III A. The length of
the extension vector x is determined so that the length of the
extension root (x,abc) is y2. The second expressions are the
basic E, weights in the extended A4 basis. There are two parts
to these basic weights, an A, part and an extension part Cx,
where Cis a numerical coefficient. The 4, part may be deter-
mined from Eq. (2.9) and the 45 roots. The As partof W _
(the basic weight associated with the extension root) is a
singlet. The extension coefficient C, for W, could be de-
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ba (x,a)

E=1/2 L2-(2/3y,1)  [4/3]
y2=3/4 _ _
cb (2x,ab)
2,3.(4/3y,1,2,)  [10/3)
A
) dT (3x,def)
x, abc 3,4-(2y,142434) (6]
{2x)
4,5_ yed (2x,ef)
(y,++++-) ﬁ 4,5 (5/3y,+++++) [|O/3]
[2]
o O fé (x,f)
y,----- (4/3y)  [4/3]

FIG. 5. The A; — E¢and Ds — E,extensions. The symbols not in parenthe-
ses are simple roots. The symbols in parentheses are basic weights. The
numbers in square brackets are the squares of the lengths of basic weights.

termined by taking the dot product with the extension root,
using Eq. (2.9). However, it is simpler to use the formula (to
be justified later)

C, = (4 ~Vkx. (5.12)

Thus the C, are a column of the 4 ~' matrix. Since E is an
equal-magnitude algebra, the 4 ~' matrix is symmetric and
we may use the row elements shown in Fig. 4.

The third and fourth expressions by a circle in Fig. 5 are
the simple roots and basic weights in the extended Dj basis,
determined by the procedure described above. The notation
for D is that of Sec. III B. The length of the extension vector
y is determined by the condition that the length of the exten-
sion root (y,— — — — — ) is 2. The symbol 2/3y
denotes 3y, etc. The numbers in square brackets are squares
of the lengths of the basic weights. These may be determined
easily in either basis, or taken from Eq. (5.6).

We now prove the column rule, Eq. (5.12). Since the
extension root is the only simple root with a component in
the added dimension, the coefficient 4, in the root basis for
any weight is the coeficient of the extension vector. For the
basic weight W , it follows from Eqs. (2.8) and (5.10)
thata, (W, ;) =C, = (4 Vs,

These bases simplify many calculations. In the standard
Dynkin method, one computes all the positive roots level by
level by adding simple roots.” If we identify the zero roots
and simple roots with levels zero and one, respectively, the
level number of the highest root is the sum of all the compo-
nents in the root basis. This number is not small for many
important groups. Similarly, for an arbitrary irreducible rep-
resentation, one may start with the highest weight and sub-
tract simple roots until one obtains the lowest weight. The
height T, or level difference between the highest and lowest
weights, is given by

T=3 (6., —a_)), (5.13)
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wherethe + and — refer to the highest and lowest weights.
The a , ; may be determined from the Dynkin indices and
Eq. (5.10); for the a _; one uses Eq. (2.10) also.

On the other hand, if one uses an extension of an 4, or
D, algebra, the A and D simple roots are so familiar that they
may be added or subtracted almost automatically. Care is
needed only when adding or subtracting the extension root
R, . Thus the effective level of the highest root is just the
component @, of this root, and the effective height of an irrep
may be obtained by considering only the term { = x in Eq.
(5.13). For example, consider the problem of constructing
the zero and positive weights of the 2925-dimensional self-
conjugate irrep ¥, of E¢. Half the height, determined from
the 3 column (or row) of the 4 ~' matrix, is 21. However, it
is seen from Fig. 5 that the effective half-height is only 3 in
the extended 4, basis, or 2 in the extended D; basis. With
these bases, construction of some large representations is
tractable.

Instead of constructing a large representation we illus-
trate the utility of the method by showing how quickly some
small representations may be constructed. We concentrate
on two simple types of irreps, namely the adjoint and short
irreps of equal-magnitude algebras. These short irreps are
necessarily equal-magnitude irreps. For these representa-
tions one has the following simple rules.

Root Rule: The dot product of two different roots that
are not conjugate to each other is either 1,0, or — 1. The two
roots may be added to form another root if and only if the
product is — 1. The nonzero roots are nondegenerate.

Weight Rule: The dot product of a root and a weight is 1,
0,or — 1. The root may be added to the weight to form a new
weight if and only if the product is —1. The weights are non-
degenerate.

We construct first the positive roots of E, using the ex-
tended A basis. Various sums of the simple 4 roots lead to
the 15 positive roots of 45. Since (abc) is the lowest weight of
the A4 representation #,, the sum of the extension root with
various sums of simple 4, roots yields all the 20 states of the
U(1) & A5 representation containing (x,abc). We next de-
termine the states of the 2x level. In order to do this we find
the dot produce of the simple root (x,abc) with states of the
x level containing different numbers of the generator quarks
a,b, and c. By using x> = 1 and Eq. (3.1), we obtain

(x,abc) - (x,abd) =1, (5.14a)
(x,abc) - (x,ade) =0, (5.14b)
(x,abc) - (x,def ) = — 1. (5.14¢c)

Only the last dot product is — 1, so we may add these roots,
ie.,

(x,abc) + (x,def ) = (2x).

The dot product of (x,abc) and (2x) is positive, so the con-
struction is complete. The positive roots are the fifteen posi-
tive A roots, the twenty (x,abc) roots and the one (2x) root.

Next we construct the 27-dimensional short basic repre-
sentation ¥, by subtracting simple roots from the highest
state (x, /). However, instead of subtracting the extension
root (x,abc) we will add its conjugate ( — x, def ). Subtract-
ing A5 roots from (x,f) leads to the six states of the
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U(1) X A representation characterized by (x,a). It is easy
to see that the dot product of ( — x,def') and a state (x,q) is
— lonlyifgisnotd, e, or f. Hence we generate states of the
type, ( — x,def ) + (x,c) = ( ab ). Thereare 15states of the
type ( ab ). The dot product of ( — x,def ) witha ( gr) state
is — 1 only if both ¢ and  are in the set (def ). Thus we may
form ( — x,def ) + ( de) = ( — x, f). There are six of these
states. The smallest dot product of ( —x,def) with a
( — x,q) state is zero, so the construction is complete.
Briefly, we summarize the results of the same procedure
in the extended D; basis, starting with the root construction.
There are 20 positive D, roots, and 16 y-level spinor roots of

the type (y,— — — — — ). (These include all spinors
where the product of the signs is negative.) There are no
spinor—spinor dot products smaller that
- - - - - )+ (3, + + + + — ), which is zero.
Thus there are no roots at the 2y level; the construction is
complete.

The extended D5 construction of ¥, of E, yields the re-
sult

P 1),
W+ +++ +) (16),
(-%}’,1+) (10)’ (5.15)

where the most positive state of each U(1) ® D; representa-
tion is given, and the number at the right is the number of
states.

We emphasize that the characteristics of a particular
basis depend not only on the subalgebra used to label states,
but also on the choice of simple roots. For example, in Ref. 4
standard methods are used to specify the D; ® U(1) proper-
ties of the roots of E,. It may be seen from Table 20 of this
reference that only two of the simple roots of £ are D; roots.
As a consequence, in the level diagram for the 27 of E (Ta-
ble 11b) the D, representations 10 and 16 are interlaced,
while the D, singlet is at the center. This is in sharp contrast
to the hierarchy arrangement of our Eq. (5.10). The point is
that these two bases are different; each is convenient for cer-
tain purposes.

If one or more of the coefficients of the extension vector
in the basic weights is nonintegral, the basis exhibits a con-
gruence class of the group.'? This follows because the coeffi-
cients of the extension vector in the simple roots are integral.
It is seen from Eq. (5.12) that the possible congruence
classes of a simple Lie algebra may be determined by inspect-
ing the 4 ~! matrix. Since any root of the final algebra G may
be used as the extension root, any 4 ~' column with one or
more nonintegral elements leads to a nontrivial congruence
relation. One multiplies the elements #; in the column by the
smallest integer N that leads to integral values of all
n; = Nn,. The congruence class of an irrep with Dynkin in-
dices g, is then

z nia; (modN).

For example, the coefficients of y in Fig. 5 exhibit the Eg
triality relation a, + 2a, + a, + 2a5 (mod 3).
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V1. REPLACEMENT BASES

The extension technique is based on finding an irrep of
the algebra H such that W _ is shorter than (1/M)"'/? times
the relevant root length, where M is a positive integer. In
many cases |W_| is equal to (1/M)"/? times the relevant
root length. In these cases if W_ is added to the simple root
set of H, the argument of Sec. II shows that the extended root
set will satisfy criteria (ii) and (iii) for a simple root system.
However, since the added root is not extended, it is linearly
dependent on the other roots. On the other hand, if one dis-
cards one of the original roots, the remaining roots will be
linearly independent, and may be taken as the simple roots
for an algebra of the same rank as H.

In all cases one representation that satisfies the above
length equality is the adjoint. Replacing a simple root by the
most negative root is the basis of Dynkin’s extended-dia-
gram technique for listing maximal, regular, semisimple
subalgebras.'* We will not consider this type of replacement,
but will limit our attention to cases in which some irrep other
than the adjoint satisfies the length equality.

In this procedure it is clear that the new root is negative.
Therefore, it is convenient to redefine positivity so that all
members of the new root set are positive, in which case they
will be the simple roots of the new algebra. Usually, it is easy
to find the appropriate redefinition; often all one has to do is
to make the discarded root as negative as possible.

We illustrate the method by considering the Az — E;
and Dg — Eg bases, shown in Fig. 6. In the 4, case the weight
ordering of the quarks is /, A,...b,a, (with i the highest); the
sum of the quark weights is zero. The notation of Fig. 6 is
similar to that of Fig. 5. The A, simple roots, determined as
in Sec. III A, are the first expressions next to the circles on

the vertical lille. The replacement root (abc) is of length V2.
The root 9(ih) is discarded, so the new algebra is E;. The

7O bd  (a2i)
.-+ (20.)
6() cb (ab4i)
T8 (T/2+.+-)
8 5

) d¢  (abc6i)
abc 6+7_ (5"00)

(37) _ .
7.8, 4Q ed (efgh4di)
(5/2+.+) | 546~ (411110..)
30 fé (fgh3i)
4,5 (31110..)
zg)g? (gh2i)
3,4_(2110..)
() hg (hi)
243.(110..)
9 ih
142

FIG. 6. Simple roots and basic weights in the 4; — Eg and Dy — E; replace-
ment bases.
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quark and antiquark (i) and (7) do not appear in any of the
E; simple roots. Hence, we redefine the quark weight order
as (h.g,...,a,i), choosing (f) so negative that all other quarks
are positive. In an orthogonal basis the redefinition may be
obtained by choosing (i) along the negative first axis. All
roots in the new set of eight are positive. The second expres-
sion by each circle is the basic weight in the 4; — E; basis
obtained by using Eq. (2.9) and the quark properties of Eq.
3.1).

The third expression by a circle in Fig. 6 is the Dy root.
Dots in a D weight symbol denote a set of components equal
to the adjacent component. In the Dy — E basis the replace-
ment root (no. 7) is thespinor (— — — — — — — +).
The9root (1, 2_) isdiscarded. Of the remaining roots only
the spinor has a component in the first direction. Therefore,
we redefine positivity by reflecting the first axis, so that all
members of the new root set are positive. The subscript 7
refers to a component taken before reflection. The fourth
expression by a circle in Fig. 6 is the Fg basic weight in the D;
basis, written in the new axis system.

We may construct the positive root set in the 4, — E;
basis from the simple roots, using the root rule that precedes
Eq. (5.14a). In this scheme the level number depends on the
nature of the 4, representation and whether or not the anti-
quark 7 is present. The level number is defined to be }foreach
of the quarks (a,b,...,h) and — § for quark (i). This is pro-
portional to the first component in the orthogonal basis de-
fined above, but normalized so that the transition (replace-
ment) root (abc) has level number one. Welist in Table I the
results of the positive-root construction. The complete set of
roots includes the 80 SU(9) roots, the 84 antisymmetric
three-quark states, and the 84 antisymmetric three-anti-
quark states.

In the Dy — E; basis the complete set of roots includes
the 120 Dy roots and the 128 spinors with positive products
of signs.

We give one more example, the 4, — E, replacement
shown in Fig. 7. The antisymmetric four-quark state (abcd)
is not short enough to be extendable for any 4,,, but may be
used as a replacement in the case of 4,, since the length is /2.
The (Ahg) root is discarded and positivity redefined so that
the & quark weight is along the negative first axis. As before,
the second expression by a root is the basic weight. The com-
plete root set consists of the 63 SU(8) roots and the 70 states
of the irrep (abcd). The 56-dimensional short irrep ¥, (top

circle in Fig. 7) consists of the 28 (ab) and 28 ( ab ) states.

VII. LISTING EXTENSION AND REPLACEMENT BASES

If one wants to list all possible extension bases for a
simple algebra G, the fastest way is to work backward. One

TABLE I. The results of the positive-root construction.

Level Highest state Number of states
0 (ha) 28
1 (Jzh) 56
2 ( abi) 28
3 (hi) 8
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ba (ah)
cb (Gb2h)
d¢ (abc3h)
+ - -
ed (efg3h)
abcd B _
gf (gh)
- hg

FIG. 7. The A, — E, replacement.

writes the Dynkin diagram for G and labels any root with a
plus sign. This corresponds to the basis obtained by starting
with all roots other than the plus root and extending with the
plus root. This listing procedure corresponds to Dynkin’s
procedure for listing the maximal regular nonsemisimple su-
balgebras of G (see Ref. 15). In a certain sense our extension
method is the inverse of Dynkin’s method for finding these
subalgebras.

We present here a method for listing all possible replace-
ment bases. We do not prove every assertion that is made.
First, we define a candidate Dynkin diagram to be any inde-
composable diagram in which the connected roots satisfy the
conditions (ii) and (iii) of Sec. IL. It is not required that the
diagram may represent actual vectors. One then chooses a
key root k and follows a procedure similar to that used to
obtain 4 ~! rows in Sec. V. One sets some convenient hypo-
thetical root basis component 4, equal to a positive value and
chooses all the other components so that every 4, (for i#k)
is equal to its stability value. If any of the resulting @, are zero
or negative, the scheme is classified as negative. If the g, are
all positive one classifies the scheme as positive, zero, or neg-
ative if the key component &, is greater than, equal to, or less
than its stability value, respectively. We assert that the class-
ification is independent of the choice of key root, and so is a
property of the candidate diagram. The positive diagrams
correspond to simple Lie algebras. If a diagram is negative, it
is impossible to find vectors satisfying the specified angle and
length relations. For each zero diagram a set of appropriate
vectors may be found, but they are linearly dependent. (The
stability values for all g, correspond to the zero vector.)

An alternate way to make the classification is to calcu-
late 4 from Eq. (2.5) and then find the eigenvalues of 4 or of
the symmetrized matrix 2 (R ?) ~' 4 [see Eq. (5.3)]. A posi-
tive diagram corresponds to a positive definite 4, while a
zero diagram corresponds to an 4 with zero and positive
eigenvalues. (If one considers only diagrams formed by add-
ing one root to a positive diagram, then 4 has no more than
one nonpositive eigenvalue, so one may make the classifica-
tion in terms of the determinant of 4.) This procedure is
more illuminating than the key-root procedure, but takes
longer to apply.

The zero diagrams are the basic tool used for listing
replacement bases. They all may be obtained from a simple
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(a)

FIG. 8. Some zero diagrams.

three-step procedure. One starts with the four infinite classes
and five specific extended Dynkin diagrams.'* For each dia-
gram with two root lengths one adds the diagram with root
lengths reversed. An example is shown in Fig. 8. Diagram
(a) is the extended Dynkin diagram associated with the al-
gebras B, . Diagram (b) is the added “length-exchange” dia-
gram. Finally, to this list one adds the two diagrams (c) and
(d) of Fig. 8. Indiagram (c), theroots & are of intermediate

length, a factor 2 longer than the shaded root and a factor

\2 shorter than the clear root. Diagram (d) denotes two
roots related as in conditions (ii) and (iii) of Sec. II, with
M=4

We do not prove that the resulting set of diagrams is
complete, but list some facts that may be used in a proof.
First, if a new root is connected to an indecomposable zero or
negative diagram, the result is negative. If a root and its
connecting lines are removed from any indecomposable zero
or positive diagram, the result is a set of one or more positive
indecomposable diagrams. It follows that every zero dia-
gram may be obtained by adding a root somewhere to a dia-
gram for a simple Lie algebra; all one needs to do s to consid-
er all the possibilities.'®

For each zero diagram, any assignment of a plus sign to
one root and a minus sign to another root corresponds to a
replacement basis. The plus root is the replacement and the
minus root is the discarded root.

In order to make clear the relation between this listing
procedure and Dynkin’s extended-diagram procedure for
listing maximal regular semisimple subalgebras,'® we con-
sider a particular zero diagram, the nine-root diagram of
Fig. 6. In Dynkin’s procedure the diagram is obtained by
adding root 9 to the diagram for Ejg, so the diagram is asso-
ciated with E,. The plus sign is assigned to root 9, and the
eight possible assignments of the minus sign correspond to
eight subalgebras of E,;. Although Dynkin did not construct
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orthogonal bases, it is clear that any E; basis could be used as
a basis for the subalgebra.

In the Ay —» E; and Dy — E4 replacement bases illus-
trated in Fig. 6, the minus sign is attached to root 9 and the
plus sign to root 8 and root 7, respectively. However, it is not
necessary that either sign be assigned to root 9. When one
lists replacement bases, the diagram is not associated par-
ticularly with one root, but equally with all nine roots. In the
general replacement H — G, it is not required that H is a
subalgebra of G, and it is not required that G is a subalgebra
of H.

VIIl. CONCLUDING REMARKS

There is an alternate, obvious method of obtaining or-
thogonal bases. If G is a simple algebra, and if either H,
HeU(1), or HeSU(2) is a subalgebra of the same rank,
one consults a table to find the structure of the adjoint of G in
terms of representations of the subalgebra. One then uses a
basis appropriate to the subalgebra to find the roots of G,
defines positivity, finds the simple roots of G, and proceeds.

The extension and replacement procedures have several
advantages over the subalgebra procedure. First, in the sub-
algebra procedure one must have considerable knowledge of
G, a priori. The extension and replacement procedures re-
quire no such knowledge, and so are more illuminating. Sec-
ond, in the subalgebra procedure it takes effort to determine
the simple roots. Furthermore, as discussed in Sec. V, there
is no guarantee that the simple roots will be a convenient root
set. Third, the subalgebra procedure cannot be used to gen-
erate those replacement bases for which H is not a subalge-
bra of G.
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In a previous paper of this series, the matrix elements were discussed with respect to boson states
of an operator K ? required for the boson realization of the sp(4, R) Lie algebra. In the present

paper, it is shown that these matrix elements can be obtained from a generating kernel given by the
overlap of sp(4, R) coherent states. The results have relevance for the determination of the matrix
elements of the generators of the sp(4, R) Lie algebra with respect to the basis of irreps of the

positive discrete series for the corresponding group, and are, in principle, generalizable to

symplectic algebras of higher dimensions.

I. INTRODUCTION AND SUMMARY

The determination of matrix elements of the generators
of a symplectic Lie algebra with respect to the basis of irredu-
cible representations (irreps) of the corresponding group is
of considerable interest in problems of collective motions,’
nuclear spectroscopy,’ generalized atomic Hamiltonians,>
etc. An important technique for the determination of these
matrix elements is the boson realization of symplectic alge-
bras.*” In a previous paper of this series® (to be denoted by I
with its equations quoted by their number followed by I) we
discussed this realization for the case of sp(4, R), as it al-
ready shows the problems that arise in the general case
sp(2d,R), where d is any integer. In paper I we stressed that
a Dyson type of boson realization can be obtained straight-
forwardly, but what is required is the one with appropriate
Hermitian properties, which is known as the Holstein—Pri-
makoff realization. To pass from the first to the second type
of realization we need the matrix elements with respect to a
complete set of boson states of an appropriate operator X, as
originally discussed by Deenen and Quesne* and Rowe et
al.® These matrix elements satisfy recursion relations,>*
whose solution was discussed in detail in paper I for the case
sp(4, R). The main objective of the present paper is to show
that with the help of the coherent states associated with a
symplectic Lie algebra, one can determine a generating ker-
nel from which an explicit analytic expression can be found
for the matrix elements of K 2in the case of sp(4, R) and that,
in principle, the method can also be extended to sp(2d,R)
whend > 2.

We proceed now to summarize the contents of the pa-
per. In Sec. II we review briefly the results of paper I, to
indicate that a boson realization of sp(4, R) requires not
only the boson creation and annihilation operators b [, 5,,
i =1,2,3 satisfying [5,, b]] = &;, which are the generators
of a Weyl Lie algebra in three dimensions «-(3), but also
extra degrees of freedom associated with an independent

*>Member of El Colegio Nacional and Instituto Nacional de Investiga-
ciones Nucleares.
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su(2) Lie algebra to whose generators .S;, i = 1,2,3 we gave
the name of spin. Our realization then expresses the genera-
tors of sp(4, R) in terms of the generators of the direct sum
Lie algebra «+(3) @ su(2) and of the operator K mentioned.
The Hermiticity properties (b1)t = b,, ST =S,, as well as
those of the generators of sp(4, R), allow us then to derive
the operator equations satisfied by K °.

In Sec. III we introduce the coherent states for
«(3) & su(2) and find the differential equations satisfied by
the generating kernel, which is the matrix element of K 2 with
respect to these coherent states.

In Sec. IV we discuss the coherent states of sp(4, R) and
find out that their overlap satisfies the same differential
equations as the matrix elements of K > with respect to the
coherent states of «+(3) @ su(2). Thus the generating kernel
can be identified with the overlap.

In Sec. V we determine explicitly the overlap men-
tioned, and in Sec. VI we use it to obtain the matrix elements
of K ? with respect to the boson states that are the basis for
irreps of «+(3) @su(2). In Sec. VII we indicate how the lat-
ter matrix elements can be used for the determination of
those of the generators of sp(4, R) Lie algebra with respect
to the basis of the positive discrete series irreps of the corre-
sponding group. Finally in the concluding section we indi-
cate possible generalizations to symplectic algebras of a larg-
er number of dimensions and in particular to sp(6,R).

Il. OPERATOR EQUATIONS FOR K'2

As discussed in paper I, the ten generators of the
sp(4, R) Lie algebra can be expressed in terms of a scalar
and three vectors

AN, BL,J,, B, i=123, (2.1)
with the commutation rules given in (3.21), i.e,,
[B],B]]=0, (2.2a)
[B:, B;] =0, (2.2b)
[B:, B]] = — 2iey J, +28; N, (2.2¢)
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[, B}] =ieuBl, (2.2d)
[/, B;] = i€u By, (2.2e)
[ ;] = i€y (2.20)
[#,B]] =B8], (2.2g)
[4.B:]= —B, (2.2h)
[, ,] =0, (2.2i)

where €, is the antisymmetric tensor and repeated indices
are summed from 1 to 3.

Particularizing a discussion by Gilmore'® to the case of
sp(4, R), the defining representation of these generators, in
terms of 4 X 4 matrices, takes the form

W= L(I 0 ) (2.3a)
~I
1002
1 ( ) (2.3b)
J 1( o ) 23
Pi= 7 0o —-3) (2.3c)
B _( 0 0) 2.3d
7 \igyo;, 0)° (2.3d)

where all submatrices are 2 X 2, I is the unit matrix while o,
7;, i = 1,2,3 are, respectively, the Pauli matrices and their
conjugates. It is easy to check, with the help of

0:0; = i€uoy + 6,1, (2.4a2)

5,0,0, =55, (2.4b)

that all the commutation relations (2.2) are satisfied. We
shall use this realization in Sec. V to get the overlap of the
sp(4, R) coherent states.

The set (2.1) of ten generators of sp(4, R) can be divid-
ed into three subsets of raising-, weight-, and lowering-type
separated below by semicolons, i.e.,

BI; J+; JV; Joi Bi’ J—’ i= 1)2’3a (25)
whereJ, =J, 1+ iJ,, and J, = J,.
The lowest weight state is then given by the solution of

the equations

B|lws) =0, i=12]3, (2.6a)
J_|ws) =0, (2.6b)
N|ws) = w|ws), (2.6c)
Jolws) = — s|ws), (2.6d)

where we differ from the notation of paper I by calling w the
eigenvalue of .4 instead of @ + n/2, as we are dealing ab-
stractly with the Lie algebra of sp(4, R) instead of its real-
ization in terms of creation and annihilation operators of an
n-body problem in two-dimensional space.

The irrep of sp(4, R) is now characterized by w, s or, if
we follow the analysis leading to (3.81), by

[w+sw 2.7)

and a complete but nonorthonormalized set of states corre-
sponding to this irrep can be written as

|mn) =P, (B")J 7}

—S],

|ws), 2.8)
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where we can take for P, (B) the monomial
P,(B") = (B])"(B])™(B])™, (2.9)

where (n,, n,, n,), and ( Bl, B}, B1) are the vectors de-
noted, respectively, by n and B".

The application of the generators (2.1) of sp(4, R) to
the states (2.8) leads then to the same operator expressions
(4.31) for these generators only with w + n/2 replaced by w,
but now we derive them through the use of the commutation
rules (2.2) and not by the explicit realization of these gener-
ators in terms of the creation and annihilation operators of
an n-particle system in two-dimensional space. Thus, for ex-
ample, using only (2.2d) we arrive at

J{P, (BN lws))}
= [ Pa (B ] (I |ws)) + P, (BN, (J ™ ws))

{ apP,
= i€ kB

B}
which agrees with (4.3bI).

From this point, the derivation of the Holstein—Prima-
koff relatization of the generators of sp(4, R) follows the
same steps as those presented in Secs. IV and V of paper 1.
Besides the boson operators b ], b;, i = 1,2,3, we need those
of an independent spin S;, which satisfy the commutation
relations

+P,J, ](J " |ws)), (2.10)

[6,6]1=1[b.b;]=[b]S]1=[b,S51=0,
(2.11a)

[6:,0]] =4y, (2.11b)

[S: 8] = €Sk, (2.11¢)

which indicate that they are the generators of a Lie algebra
corresponding to a direct sum of a Weyl algebra in three
dimensions and an independent unitary unimodular algebra
in two dimensions, i.e., «(3) ®@su(2). These generators
have the standard Hermiticity properties

bHt=b, (2.12a)
St=§,. (2.12b)
The generators /", B}, J;, and B; of sp(4, R) can now
be expressed in terms of b}, b,, and S; through the relations

(4.6I) and (4.2I), where the latter involves the operator K
we wish to determine. Thus we obtain in vector notation

N =KN+wXkK ™!, (2.13a)
B'=Kb'K ', (2.13b)
J=K(L+S)X}, (2.13¢)

B=K[—b'(b:b) + (2N +2w)b —2i(bXS)]K

(2.13d)

where
L= —i(b'XDb), (2.14a)
N=bt-b. (2.14b)

We can easily check that from the commutation relations
(2.11) the generators of sp(4, R) satisfy the commutation
relations (2.2). Note that the realization (2.13) differs from
(5.41) not only by the fact that @ + n/2 is replaced by w, but

also by the appearance of K, K ~'in (2.13a) and (2.13c) as
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we do not make here the explicit assumption that X is an
invariant of u(2) as indicated in (5.3I).

The generators of sp(4, R) have themselves the Hermi-
tian properties

(B)Y'=B, (2.15a)
Ji=J, (2.15b)
Nt =4 (2.15¢)

as can be clearly seen from (1.1I) and (3.1I). Thus assum-
ing, as we can do without loss of generality, that K is Hermi-
tian, we get from the Hermitian conjugate of both sides of
(2.13) that

N =K YN+ w)K, (2.16a)
B—K-'bK, (2.16b)
J=K YL+ S)X, (2.16¢)

Bt =K '[ — (b'+b")b + bT(2N + 2w) — 2i(b*XS) 1X.
(2.16d)

Equating corresponding expressions in (2.13) and
(2.16) we get the following operator equations for X 2:

[N, K?] =0, (2.17a)
[L, +S;,K?] =0, (2.17b)

bK>=K>?[ —bl(b-b) + (2N 4 2w)b, — 2i(bXS), ].
(2.17¢)

We do not write the equation coming from (2.13b) and
(2.16d) as it is the Hermitian conjugate of (2.17c).

In paper I, we saw that the boson states are the elemen-
tary ones associated with a particle of spin s in a three-dimen-
sional harmonic oscillator, which in (5.10I) were denoted
by the ket

|v[is] jm), (2.18)

where v is the total number of quanta, / is the “orbital” angu-
lar momentum while j and m correspond, respectively, to the
total angular momentum and its projection. These states are
orthonormal and from (2.17a) and (2.17b) only the matrix
elements

(v[!l's] jm|K *|v[Is] jm) (2.19)

are different from O; besides, they are independent of m.
Equation (2.17c) leads to a recursion relation for the matrix
elements (2.19) and the procedure for its solution was dis-
cussed in the appendix of paper L.

In Sec. VI of the present paper we shall derive an explicit
and closed analytic expression for (2.19) using coherent
states of both the «+(3) @ su(2) and sp(4, R) Lie algebras.
To achieve this objective we first discuss in the following
section the matrix elements of K ? with respect to coherent
states of «+(3) ®su(2), as well as the differential equations
that they satisfy.

. EQUATIONS SATISFIED BY THE GENERATING
KERNEL

As the Lie algebra «(3) @ su(2) is a direct sum, its co-
herent states are the direct product of those of «(3) and
su(2). For the Weyl group «+(3) the coherent states are the
standard ones associated with the three-dimensional oscilla-
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tor,"" while for su(2) they have been discussed, among oth-
ers, by Kramer and Saraceno.!? Thus we can write them as
the ket

[vz) = exp(Z-b")exp(FS.)]s), (3.1
where b, b,, and S; satisfy the commutation rules (2.11),
S, =8,+iS, and y and z, i= 12,3, are complex
numbers, with J and Z; being their conjugates. The ket |s) is
the direct product

ls) = |0} |s, — s}, (3.2)

where |0} is the zero quantum state associated with the bo-
sons b | and b;, while |s, — s} is the lowest weight state of the
independent spin operator S;. The corresponding bra is the
Hermitian conjugate and thus takes the form

(yz| = (s|lexp( pS_)exp(z*b). (3.3)

The measure p( y, J, z, Z) required for scalar products
in the four-dimensional complex space of y, z,, 2,, z, is clearly
the product of the measures'!"'? associated with the «(3)
and su(2) Lie algebras, where in the latter case it depends on
the spin s, and it takes the form'"'?

P(YY,LZ)
=7 3exp(—z- D72+ 1) (1 +Jy) ~*>+2,
(3.4)

The reproducing kernel is also a product of those associated
with the «(3) and su(2) Lie algebras and thus is given
by 11,12

exp(z' +Z) (1 + y'5)”. (3.5)

Our objective is now to find from the operator equations
(2.17) the differential ones satisfied by the generating ker-
nel, i.e., by the matrix elements

(y'Z|K?|yz) (3.6)

of the operator K * with respect to the coherent states (3.1)
and (3.3). For this purpose we require first the differential
form with respect to the variables y', ', or 3, Z of the opera-
tors b [, b;, and S; when acting on the bra (3.3) orket (3.1).
We start with the operator b | acting on the bra and thus have

(y'Z'|bt = (s|exp( y'S_)exp(z *b)b]
= (s|{exp(z’ *b)b [ exp( —z'*b)}

Xexp( y'S_)exp(z' -b). 3.7)

We will use, in some of the following discussion, expansions
of expressions like the curly bracket in (3.7) in terms of
multiple commutators, i.e.,

{exp A}B{exp( — A)}
=B+ [4,B] +}[4,[4,B]] + -, (3.8)
which from the commutation rule [b,, b]] = 8, imply that
exp(z +b)bfexp( —z' *b) =b]+2z. (3.9)

As, furthermore, (s|bf = {b,|s)}' =0, we then conclude
that

(3.10)

as we could expect from the analysis in Bargmann Hilbert

(YZ'|bl=2z(y'Z|,
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space.!! Applying now b; to the bra we see more directly that

(y'2'|b; = (s|lexp( y'S_)exp(z' *b)b, = % (yz'|.
(3.11)
We turn now our attention to the operator S,, ¢ = +,0
where S, =S8, 1 iS5, S, = S; and apply it to the bra to get
(y'Z'|S, = (s|exp(y'S’'_)exp(z' - b)S,
= (s{{exp(y'S_)S, exp( —y'S_)}
Xexp(y'S_)exp(z' +b). (3.12)

Again, from the expansion (3.8) and the commutation rela-
tions

[S_,8.]= —128,
we obtain
(y'Z|S, = (s|{S, +»'[S-, S, ]

+4y?[S_,[S_, 8,1 exp(y'S_)exp(z'*b),
(3.14)

[SpS.]=+S5,, (3.13)

and thus
(yZ|S, = (s|{S, — 20'S, — yS_}
Xexp(y'S_)exp(z'+b)
= —y’(y’% —28)(y'Z’|ES'+ (yz|,
(3.15a)
'Z|So = (s|{S, + ¥'S_Yexp( y'S_)exp(z' *b)

’ a - r !
=( Ey-,-—s)(yz I=S;(yz],  (3.15b)
(y'Z'| = (s|S_ exp(y'S_)exp(z' - b)
J
= — (yz|=S"_ (y'z|, (3.15¢)
% | |
where we made use of
IS, ={s_|»)}* =0, (3.16a)
(5|So = {So|$) Y = —s(s]. (3.16b)

Thus the operators S, and S, when acting on the bra
(»'Z'|, become the differential operators S’, and S; de-
fined in (3.15).

A similar analysis, in which b [, b,, and S, now act on the
ket |y,2), gives us

bllyz) = a% lyz), (3.17)

b, lyz) =z,|yz), (3.18)

S, |yz) = 9 yz)= -5, |yz), (3.192)
ay

Solyz) = (J_?c% - S)Lyz)E —Solyz), (3.19b)

S_|yz) = (2is -5 a%)lyz)s —5_pm, (3.19¢)

as would follow also from Hermitian conjugation of (3.10),
(3.11), and (3.15). Note that S, and S, defined by (3.19),
which are differential operators in the variable 7, have here a
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— signascompared withS’, andS; of (3.15). This is tobe
expected, and guarantees that both S'; and S, ¢ = +,0sa-
tisfy the commutation relations (3.13). In fact the orbital
angular momentum

Li = - ie,-jkb}bk (3-20)

shows a similar behavior, as from (3.10) and (3.11) we have

(YZI|L, = —ieuz] 9 (y'z'|=L(yz|, (3.21a)
dz;,
while from (3.17) and (3.18) we have
L,|yz) = — i€y, 2 vz)= —L,|yz). (3.21b)
%z
We note also that the number operator
N=blb, (3.22)
when acting on bra and ket, becomes
a - ’ ’ !
(YZ|N=2z— (y'Z|=N'(y'Z|, (3.23a)
az]
N|yz) =%, 9 lyz)=N |yz). (3.23b)
gz,

We are now in a position to derive the differential equa-
tions satisfied by ( y'z'|K ?|yz) by taking both sides of the
equations (2.17) between a bra ( y'z’| and a ket |yz). Mak-
ing use of the differential expressions for the operators b }, b,,
and S, i = 1,2,3, when acting on a bra and a ket, we then get

(N'—N)(yZ|K?yz) =0, (3.24a)
(L!+8!+L,+85)(yz|K?*yz) =0, (3.24b)
3

i ’ IK2

p (y'z'|K*|yz)

—{—@D 5‘2_ +Z (2N + 2w) + 2i(Z X §),}

X (y'z'|K?|yz), (3.24¢)

where N’, L/, and S are defined, respectively, in (3.23a),
(3.21a), and (3.15), while N, L,, and S, are given in (3.23b),
(3.21b), and (3.19), and where we note that S; =4(S,
+5_),8,=(1/2i))(S, —S_),and S, = §,,.

We proceed now to show that the overlap of coherent
states associated with sp(4, R) satisfies the same equations
(3.24), and that thus we only need to find this overlap to
evaluate the matrix elements (3.6).

IV. OVERLAP FOR COHERENT STATES OF sp(4, R)
AND THE EQUATIONS THEY SATISFY

As in the case of «+(3) @ su(2), the coherent states of
sp(4, R) can be written'*'* in terms of exponentials of linear
combinations of the raising generators of sp(4, R) applied to

the lowest weight state. From (2.5) and (2.6) we have, then,

lyz) = exp(Z - B )exp( 3/, ) |ws), 4.1
where we now distinguish these sp(4, R) coherent states
from the corresponding ones for .-(3) @su(2) given in
(3.1) by using angular rather than round kets. As before y,

Z,, Z,, and z, are complex numbers and the bar above indi-
cates the conjugate. The corresponding bra is given by the
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Hermitian conjugate and thus for new parameters y’, z’ it
becomes

(4.2)

We wish now to find the differential equations satisfied
by the overlap

(y'z|yz), (4.3)
for which we will take the matrix elements of the generators
N, J;, B;,and B of sp(4, R) between the bra (4.2) and the
ket (4.1). Applying these generators to the left and right we
get, with the help of the commutation relations (2.2) and the
expansions (3.8), the differential equations for the overlap,
which will turn out to be identical to those satisfied by
(y'2’|K ?|yz), which are given by (3.24).

We start with .#” and get
(yZ|AN |yz)

= (ws|exp( y'J_)exp(z' * B).+|yz)

= (ws|exp( y'J_){exp(z' ‘B).AN"

Xexp( —z'* B)}exp(z' * B) [yz). (4.4)
From (2.2) and (3.8) the curly bracket in (4.4) becomes
¥V +z[ B, )}=A"+2 B, (4.5)

As ./ commutes with J;, and when applied to |ws) gives w,
we have that

- ’ a 1!
(yz| W lyz) = ( 24 w)< y'z'lva).
dz;
Applying now in (4.4) the generator.#"to the right we get in
a similar fashion

(yz'| A |yz) = (Ej % + w)( y'z'|yz).

7

(y'Z| = (ws|exp( y'J_)exp(z' + B).

(4.6)

4.7)

Equating then (4.6) and (4.7), we obtain the expression
(N'—N){yzlyz) =0, (4.8)
where N’ and N are given in (3.23).

Turning our attention now to J; we have
(y'z|V;lvz)
= (ws|exp( y'J_)exp(z' * B)J,|yz)
= (ws|exp( y'J_){exp(z * B)J,
Xexp( — z  B) }exp(z * B) |yz). (4.9)

Again we use (2.2) and (3.8) and see that the curly bracket
becomes

94 +2z)[ B}, ']i]} =J, — i€z By,

and so the matrix elements can be written as

(4.10)

(ws|exp(y’J_)(J,- — l€uz] ai')exp(z’ *B)|yz)
z

k

= (ws|{exp(y'J_)J, exp( —y'J_)}
Xexp( y'J_)exp(z « B)|yz)

—iepz) — (y'Z'|yz)

9z;,
=(S;+L)H{(yz'|yz), (4.11)
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where S is defined as in (3.15), as the curly bracket in
(4.11) can be evaluated in exactly the same fashion as the
one appearing in (3.12), while L ] is given by (3.21a).

Applying now J; to the right we get in a similar fashion
that

(yz'|J,lyz) = — (S, + L,))(y'Z|yz),
where E, and Z,. are given, respectively, by (3.19) and

(3.21b). Thus from (4.11) and (4.12) we see that the over-
lap satisfies the equation

(4.12)

(L;+S8;+L,+S){yz|yz) =0. (4.13)

Considering now B, we immediately see that its matrix
element, when the operator is applied to the left, is given by

(¥'2'|B;|yz) = (ws|exp( y'J_)exp(z *B')B,|yz)

9 yu'lyz). (4.14)

az;

On the other hand, when B, acts on the right we can write
(y'Z'|B;|yz) = ( y'z'|B; exp(Z ‘BN exp( 3/, ) |ws)
= (y'z'|exp(Z ‘B"){exp( — Z- B")B,

Xexp(Z BY) }exp( /. )|ws). (4.15)

Again we use (2.2) and (3.8) and see that the curly bracket
becomes

{B,~Z[B},B,] +12Z.[BL.[B},B.]]}
= {B, — 2ieyZ,Jy + 2N
—(Z°Z)Bl +2Z,(z-B"},

so that introducing it in (4.15) we obtain

(4.16)

(y'2'|B;|yz) = ( y'Z'|exp(Z ‘B")
X {B, — 2ieu 2,J, + 22, Yexp( 3/, ) |ws)
_ .. d _(_ d
;1 _ N v 22,~ 7 —
+<yZI{ (Z+7) % + (, az,)]
X exp(Z+ BN )exp( /) |ws). (4.17)
In the first term on the right-hand side of (4.17) we see that

B, exp(3J_)|ws) =0, (4.18a)

as the commutators of power of J, with B, gives some B; on
the right-hand side and from (2.6), B;|ws) = 0. Further-
more
— 22 J (expFJ., ) ws)
= — 2i€yZ; exp(yJ.)
X {exp( — $J ), exp( 3/, ) Hws)

= 2i€u 7S, (exp( 3/, ) |ws)), (4.18b)

where S, is given by (3.19), as follows from the evaluation of
the curly bracket in (4.18b). Finally

2z, exp( yJ ) |ws) = 2Z,wexp( 3/, ) |ws), (4.18¢c)

as ./ commutes with J; and ./ ws) = w|ws).
Combining (4.17) and (4.18) with (4.14), we then get
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the differential equation

%(y’z’Lm —{- (2-2)5_‘; +2,N + 2w)

+ 2i€u 2,8 H y'z'|yz). (4.19)

There remains to evaluate the matrix element of B | but
it will lead to no new result, as

(yz|Bllyzy = (yzlB/|y'z), (4.20)
where the bar above means the conjugate of the matrix ele-
ment,

We have thus shown that the overlap ( y'z'|yz) satisfies
the equations (4.8), (4.13), and (4.19), which are identical
to the equations (3.24) satisfied by ( y'z’|K ?|yz), so that we
can take

(y'7Z|K?yz) = (y'2'\yz). (4.21)
In the next section we shall evaluate explicitly the over-
lap ( y'Z’|yz) and in Sec. VI determine, with its help, the

matrix elements of K2 with respect to the boson states
(2.18).

V. DETERMINATION OF THE OVERLAPS FOR
COHERENT STATES OF THE sp(4, 7 ) LIE ALGEBRA

The overlap of coherent states of sp(4, R) is given by
(y'Z|yz) = (ws|exp( y'J_){exp(z'+ B)exp(z-B")}
Xexp( /. ) ws), (5.1)

and hence it is a matrix element of an operator associated
with the symplectic group. To evaluate it we try to write the
operator inside the curly bracket of (5.1) in a canonical form
where we first have exponentials of linear combinations of
raising generators B, then of the operators J; and .#" of a
u(2) subalgebra of sp(4, R), and finally of B,, i.e.,

(ws|exp( y'J_){exp(z' - B)exp(Z - B") }exp( 3/, ) |ws)
= (ws|exp( y'J_){exp(d + B )exp(et)
Xexp( f+J)exp(c+B)}exp( yJ, )|ws), (5.2)

where ¢ is a scalar and ¢, d, and f are vectors, all of them
functions of z’ and z, which we shall proceed to determine
below. The advantage of the form (5.2) is that the applica-
tion of B, to the state exp( /. )} |ws) translates, through the
commutation relations (2.2e), in having an operator B, act-
ing on |ws), which from (2.6) gives zero. Through the Her-
miticity property we also get

(wslexp( y'J_)B! = (B, exp(yJ ) |ws))' =0, (5.3)
so we would conclude that
(y'z'|yz) = (ws|exp( y'J_)exp(et)
Xexp(f+Jexp( 3/, )|ws), (5.4)

and thus the overlap is a matrix element of a representation
of a GL(2,C) as y', ¢, f}, f>, /3, and y are arbitrary complex
numbers. This representation can be obtained by procedures
discussed by Louck.?”

- To obtain ¢, ¢, d, and f we now consider a matrix repre-
sentation of ¥, J;, B], and B, and we shall use the defining
one givenin (2.3). From (2.3b) and (2.3d) we have that, as
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matrices, B} B} and B; B; vanish and thus

1 Z
exp(z+B") = (0 ) , (5.5a)
I 0)
" B) = s 5.5b
exp(z’' *B) (Z’ 7 (5.5b)
where all submatrices are 2 X2 and
Z= —i(i-o)0'2=(21 Tl __23._), (5.6a)
-z —-Z,—iZ,
—2z] —iz; z3
Z’=i&2(z'-a)=( , , ) (5.6b)
z; z] — iz
Similarly we have
I D
«Bf) = .
exp(d-B") (0 J; ) , (5.7a)
7 0)
exp(c*B) _(C 1) (5.7b)
where
D= —i(d+o)oy, (5.8a)
C=ig,(c- o). (5.8b)
Finally we can write
exp ef 0 )
= , 5.9
exp(e/) ( 0 exp{ — el) (5.92)
exp F 0 )
£ J) = ( =1, 5.9b
exp(f+J) 0 exp( — F1) (5.9b)
where T indicates Hermitian conjugate and
F=¢o-f, (5.10a)
F'= (D= (o) =5"f, (5.10b)
as the Pauli matrices are Hermitian.
Introducing the notation
G =l + F, (5.11a)
Gt=.+TF1, (5.11b)
we see that Eq. (5.2) becomes
(2 1422)
Z' I+Z'Z
_(expG +Dexp(—GHC D exp( —67))
- exp(—GNHC exp(—G" /’
(5.12)
from which we obtain
exp(—GHY=(U+2'2), (5.13a)
C=U+22)"'Z, (5.13b)
D=Z(U+Z'Z)"}, (5.13c)

exp(G)=I—-Z(I+Z'Z2)"'Z’
=I—-(U+2ZZ")"'ZZ'=(U+2ZZ")"},
(5.13d)

where we used the series expansion of (I + ZZ ')~ 'toobtain
the result on the right-hand side of (5.13d).
Now we see that the reciprocal of the 2 X 2 matrix

X=I+2Z'=I—(0+Z)(0+2) (5.14)
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is given by

X-'= 1 ( X22 —xlz)’
det X \ — xy, X1
where we denote by x_4; a, f = 1,2, the components of X.

From (5.14) we have
detX=1—tr[(0*Z)(0-2')] +det[(o*Z)(c-2)]

(5.15)

=1-2(z'+2)+ (z'-2')(Z+ %), (5.16)

while
xy=1—Z2 +22_,2;, (5.17a)
— X =22, —\2Z_%, (5.17b)
— Xy = — 22,2 + 22,2}, (5.17¢)
Xp=1-Z2 +22,2_,, (5.17d)

where in (5.17) we use the spherical components of the vec-
tors, i.e.,

2, = FUA2)(z +iz), zb=1z5;

Z,= :F(l/\/i)(il:tiiz), 2, =12, (5.18)
From (5.13) we have then that

exp(G) =X, exp(—GH=X1'=%, (5.19)
where ~ stands for the transpose of the matrix.

We turn now our attention to

exp(yJ_), exp(J¥/,), (5.20)

when we consider J,, i = 1,2,3, as the matrices given by
(2.3¢c) so that

(Y’ 0 )(X“ 0)(? 0 )_(Y'X-l?
o ¥» Vo X/\o M\ o

o 0
) |
+ 0 o (5.21a)
J_=(”— 0 ) (5.21b)
0 —0o,
where 0, = 0, + io, are the 2 X 2 matrices
0 1
”*z(o o)’ (5.22a)
0 0
g'__=(l 0). (5.22b)
As 0% =0, we have that
(T 0) (y’a_ 0 )
exP(y""’(o ) o —yo,
Y’ 0 )
= ~ s 5.23
(0 (¥ (3:232)
- (I 0 yo 0 )
exP(yJ+)‘(o 1)+ 0 —jo_
Y 0 )
_(0 1) (5.23b)
where
Y’=(1, 0), (5.24a)
y' o1
—_ 1 _)7)
= . 5.24b
Y (0 1 ( )

The matrix that corresponds to the operator appearing
in (5.4) becomes

and thus we see, that the transformation associated with the operator appearing in (5.4) is characterized by the 2 X 2 matrix

QE(qll q12) EY’X—1?= (detX)—l(;l 0) ( x22

q21 922 1\ —xy,
_ (detX)“( X22 Xy — X1z
V'Xpy — X1 YVXyy — X5 Y — Y X1+ Xy

The discussion carried between Egs. (5.5) and (5.26)
concerned the matrices associated with the defining repre-
sentation of the four-dimensional symplectic Lie group. The
matrix element of the operator appearing in (5.4) is then an
element of the representation for the lowest weight state |ws)
of (2.6) of a two-dimensional general complex linear group
associated with the matrix Q of (5.26) for a partition
[Ay, A,] which, from (2.7) and (3.81), is given by

hh=w+s, h=w-—s. (5.27)

In the analysis of Louck’® the lowest weight matrix element
of this representation is given by a diamond pattern whose
value is
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—xu)(l f)
X1 0 1

) . (5.26)

hy
hy Ry )= (g22)™ ~ *(det Q)™
hy
= (g2)¥(det X) ~—9.  (5.28)

Substituting (5.17) in (5.26), we then conclude that the
overlap becomes

(y'z'|yz) = 4*A- @+, (5.29)
where .# is given by
M= 1+yP)(1 -2 ~T) — 26990 ,2,Z,., (5.30)

with € being the antisymmetric tensor in indices
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g= 1,0, — 1, whichis 1 ( — 1) for an even (odd) permuta-
tion of 1,0, — 1, and zero for repeated indices. The three
components ¢ = 1,0, — 1 of v, are given by

v=y, vo= A2 —y%), v_,= -3, (531)
while
A=detX=[1-22Z2+ (2 +2')(Z°Z)]. (5.32)

To construct the operator relations underlying Eq.
(5.2), we used the defining matrix representation. In view of
the parameters y'z’ and yz we are dealing on the matrix level
with the complex extension Sp(4,C) of the symplectic
group. This offers no problem except for the assumption
made in Egs. (5.13b)—(5.13d) that (/ — Z 'Z) be invertible.
In an approach based on the analytic parametrization of co-
sets'S it is shown that both Z’ and Z must be restricted to a
Siegel domain, that is, we require

I-Z'Z'">0, (I-2ZZ%">0. (5.33)

Then it can be shown that (J — Z‘'Z) is invertible.

On the operator level we are dealing with an infinite-
dimensional unitary representation of the real symplectic
group. This representation in general cannot be extended to
the complex symplectic group so that Eq. (5.2) cannot be
justified by operator multiplication. This difficulty is re-
solved by noting that the operators are not applied to a gen-
eral state in the representation space but rather to the lowest
weight state.

Finally we note that Eq. (5.28) contains a half-integer
power of the determinant of the complex matrix X. The pre-
scription for this power is obtained from Bargmann’s!” anal-
ysis of the metaplectic representation.

In the next section we make use of the explicit expres-
sion (5.29) of the overlap and the relation (4.21) to deter-
mine the matrix elements of K ? with respect to the boson
states (2.18).

Vi. MATRIX ELEMENTS OF X2 WITH RESPECT TO THE
BOSON STATES

We start by expressing the coherent state (3.1) in terms
of the boson states (2.18). For this purpose we recall that the
coherent state for the Weyl Lie algebra «(1) can be devel-
oped in terms of one-dimensional harmonic oscillator states
|v) as

Ll

exp(zbNH0) = 3 %(b*)”IO) = i [v) (v]2),
4 v=0

v=0

(6.1)

where (v|z) = (v!) ~V2/2". A similar result holds for «(3),
but in this case we characterize the three-dimensional har-
monic oscillator states by total number of quanta v, angular
momentum /, and projection 4, i.e.,'8

exp(z-bH)|0) = ¥ P, (z)P,, (b")|0)
viu
=3 |viu) (viu|z), (6.2)
vip
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where
|vip) = P,,, (b')]0)
=4, bH =02, (bh]0), (6.3)

with %, (v) being the solid harmonic (3.10I) and 4,, the
normalization coefficient (5.91). The bracket (z|viu)
=P, (z) and (viu|z) is its conjugate.

We now note that the state |s) of (3.2) is the lowest
weight state of spin s and so we cannot apply to it powers of
S, larger than 2s. Thus'®

2s
exp(FS.)[8) = ¥ (KN TFS,)*Is)
k=0

_ s (S—-U)! 172 sho
_,;_,[ (2s)!(s+a)!] (S l”]
(25)! ]"2- +,,]
><{[(s+c7)!(s—a)! y
= i |so) (soly), (6.4)

o= —§

where |so), given by the first curly bracket, is now a spin
state with projection o= —s, —s+ 1, ... ,s while (soly)
= ( y|so) is given by the second curly bracket.
Using the orthonormality property of Clebsch—-Gordan
coefficients when summed over jm we can now write

lyz) = :’S_:|v[ls]jm)(v[ls]jmly2), (6.5)
vijm
where, as in (5.101), we have
[v[is] jm) = ¥ (lu,so| jm)P,, (b")|so)
1o
=[P, (bNx|5) ], (6.6)
while
(yz|vlis] jm) = (vlis] jmlyz) = [(2|v]) X (Y|5)1jm-
(6.7)

Note that if we substituted y,z by y',z’ in (6.7) we can
immediately check that (z'|vix) and ( y'|so’) are irreducible
tensors with respect to the L ; of (3.21a) and S'; of (3.15),
characterized, respectively, by / and s, and thus the state
(y'Z'|v[is] jm) is associated with an irrep j of a SU(2)
group whose generators are J; =L+ S/;i=1,2,3.

As (z|viu) and ( y|so’) are orthonormal states'''? in the
complex Hilbert space of measure (3.4) this holds also for
(yzjv[Is] jm) of (6.7) and thus we can write

(vII's] jIK ?|vIs] /)
- [[orsmyo

Xdu(y,z')(y,2'|K*yz)du( y,z)

X ( yz|v[Is] jm), (6.8)

in which the matrix element is diagonal in v, j and indepen-
dent of m, as from (3.24a) and (3.24b), (y'z'|K?|yz) is a
scalar of the u(2) Lie subalgebra of sp(4, R). The volume
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element du( y,z) is given by with p taking the value (3.4).
du(y,z)=p(y,522)d ReydImy To evaluate (6.8) explicitly we first develop separately
, the two factors .#* and A~ “*+* appearing in ( y'z'|K ?|yz)
X H (dRez; dImz,), (6.9) (()2 (7 5).2?) in terms of the complete set of orthonormal states
=1 ./), Le.,

]

(y'Z|K?yz) = Y {(y'Z|N [L's)IM)(N [L's)J |.#*|N [Ls]J) (N [Ls]/M |yz)}
vNL'L
JMAa

X{(z'|v —NAa)(v —N,A|A~®+2|yv — N, A) (v — N, Aa|z)}, (6.10)

where again we use the fact that .#* and A~ “**) separately are also scalars of the u(2) Lie subalgebra.
Using the orthonormality property of Clebsch—Gordan coefficients we can then write (6.10) as

YZIKp2) =3 ¥ F[(@|v—NOX[(ZINL)X(Y[9];]m

vim NL'L AJ

X (N [L's\J |4%|N [Ls}J) (v — NA |A~“*2)y — N2) [(z]v = NOX[EZNLYX (Y1, ], -
(6.11)

We now carry a recoupling of the states and a reduction of the products [ (z|v — NA) X (z|NL)],, to get
[(zlv — NA) X [(2|NLY X ( p|$)]; ]m
=3[+ D)@+ D)= D A W(LIsA) H(AL)
[}
XA, _ yaAne (4,) 7' (pzlv[is] jm), (6.12)
where
A, =(—DY"P2UGm) 2 [(v+ 1+ Dy — DI —2, (6.13a)
HI"D =[Q+ 1)@+ 1)]Y2[4r(2] + 1)]7Y%(1'0,1 70|10}, (6.13b)

and W is a Racah coefficient.
Substituting (6.12) in the left- and right-hand side of (6.11) and going back to expressions (6.6) for the matrix elements

of K 2 with respect to the boson states, we obtain

vlI's1 j1K *|v[is] /)
= 3 {(=D"HTAIQU A D@+ DIEWAGL TS, Ay (4,) 7 (= DI+ 747
NL'LAJ
X [214 1) (2T + D 1VPWULTsA) A, _ ya Ay (A,) T HAL ' 1YH(AL
X (N [L's)J | 4*|N [Ls)J) (v — NA|A~ 9|y — NA)}. (6.14)

We now have to obtain the matrix elements of .#* and A~ ** with respect to the states of type (6.6). We start by
introducing what we could call the cylindrical states in the space y, z; through the definition

(zl)(N—‘r+,u)/2(zo)r(z_l)(N—f—ll)/Z(ylsa) (6 15)
[((N =74+ u) /20 (N — 7 —pu)/2)1]"? '

The states (6.6) can now be expanded in terms of (6.15) as

(yz|N1uso)=

(yzIN [Ls]IM) = 3 S {( yz|Nruso) (Lp,so|IM ) (NTu|NLu)}, (6.16)

pHo T

where the angular bracket is a Clebsch—Gordan coefficients, while the last round one is the transformation that relates the
cylindrical and spherical states of the three-dimensional oscillator?

(NTu|NLp) = ( — 1)V —D/2W=02-L[ (2], 4 1)(L — p)7((N +u — 7)/2)1]'/2
X[(N+L+ DN — LYWL+ p)((N—p—7)/2] 12

(— 1)k(N;L +k)!(2L _ 2k

[("'”“L +k)!]“l. (6.17)

L
Xk;, KWL — kNL — 2k — p)! 2
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We then have that

(N [L's)J | #*|N(Ls)J) =f (N [L's]IM |y'z)du(y'.,2')(y'z | 4% |yz)du( y,z) (yz|N [Ls]JM)

=¥y AL ‘' 50'\IM ) (NL '’ |Nr'p') (Lu,s0|JM ) (NTp|NLp ) (N7'u'so’ |4 *|NTuso) },

Tt u'y oo

where

(NT'y'so’| 4 *|Nruso) = Jf{(Nr'y’sa’ y'z)du(y,2)(y'z'|4%|yz)du( y,z)( yz|NTuso)}.

(6.18)

(6.19)

The matrix element (6.19) is easy to evaluate because of the orthonormality of powers of y and z,, ¢ = 1,0, — 1, with
appropriate coefficients' "' with those of the corresponding ¥ and Z, . Thus developing .# **in terms of y', z;, 7, and Z, with the

help of the binomial theorem, we get
(NT'u'so’| M4 *|Ntuso)

=(— 1)s+p+u'+02N—(‘r+f)/2[(s+a)!(s_ 0')!(S+U’)!(S—U’)!]”2

X [(N —7 - p')!r,!(zv —r'+ ,u')l(N o — p)m(N —r+ #)!] 12

2 2

xS(TEEZ2=T —Hsr)|W—2—o -0+ 20
14

2

where

N—r+4+u N—71+p
Dy=zd:[(s—a— —* —d)!d!(—s+y—a’+d+ — )

x|y —
(- =5

X(r —T—p+u +d)!(s_},+ oO+o+1—7T

2

Turning our attention now to A ~“**), we show in the Appendix that

(v—NA|A-®+2y — Nz = L

2
L —_ -1
IAT=02C sup)]| D 60
N—7 -y +d)g(&%_d)!(s+a'—y—d)!

anl! 6.21
2 B )] ' (20

B AWM — ]
v-N+2w+25—A-3IMy—N+2w+2+A - (6.22)

Substituting (6.20) in (6.18), and the latter together
with (6.22) in (6.14) we get the explicit form of the matrix
elements of K ? with respect to the boson states (6.6).

As indicated in paper I, once we have the matrix ele-
ments of K * with respect to the boson states (6.6) our prob-
lem is to find those of K. As K % is diagonal in v, j, and m, we
have to deal only with the finite Hermitian matricesin /' and
! for fixed values of v and j, where /' and / are restricted by

|j—s|<l I<j+s (6.23)

To obtain the matrix K we have to diagonalize K 2, take its
square root (which is feasible as all the eigenvalues of K % are
non-negative), and then return X to the original basis. All of
this is possible numerically but unfortunately not analytical-
ly if the secular equation is of order higher than 4 and thus an
explicit analytic boson realization of sp(4, R) cannot be car-
ried out as we stressed in paper 1. The expression (6.14) for
the matrix elements of K ? with respect to the states (6.6) is,
though, fundamental for the calculation of the matrix ele-
ments of the generators of a sp(4, R) Lie algebra with re-
spect to the basis of irreps of the corresponding group, as we
proceed to show in the next section.

v—1Il, v—1' are even.
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Qw+2s — 22w + 25 — )N

VII. MATRIX ELEMENTS OF THE GENERATORS OF
sp(4, A ) WITH RESPECT TO THE IRREPS OF THE
CORRESPONDING GROUP

By exactly the same analysis as that of Sec. VI, we see
that the coherent state (4.1) associated with a sp(4, R) Lie

algebra can be expanded as
lyz) = ;Iv{ls}jmﬂv{ls}jmlyz% (7.1
vijm

where the round bracket is still given by (6.7), while the
angular ket now takes the form

[vlis] jm)=Y (lu,s0| jm)P,,, (BY)|wso), (7.2)
uo
where
— o)l 172
|wso) = (2:#%)—!] J*F%ws). (7.3)

As we indicated in paper I, the states (7.2) are basis for
the irreps of the chain of groups

Sp£4,)R) 2U2) =U(1)XSU(2); SU(2)D0(2),
w,s, v 7 J m

(7.4)
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where underneath each group we give the quantum number
characterizing its irrep. The number / is a multiplicity index
that distinguishes the different states in a given irrep (ws) of
sp(4, R) that have the same irrep v, j of U(1) X SU(2).
The basis (7.2) is not orthonormal® and thus to be able
to use it we need first to calculate the overlap of its states, i.e.,

(v1's) jivlis1 ), (7.5)

where as v, j, and m are associated with irreps of the groups
U(l), SU(2), and O(2), they must be the same in bra and
ket and the overlap is independent of m.

From the orthonormality properties of the
(yz|v[is] jm) discussed in Sec. VI, we immediately con-
clude that

(vI1's) jivlis] )
- f j {[1's) jmly'z)ydpu( ¥,z y'2 |ve)

X du( y,z)( yz|v[is] jm)}, (7.6)
so that from (4.21) and (6.8) we get
(il's] jlvlis] ) = (v[I's] jIK 2|vis) ), (7.7)

where the right-hand side of (7.7) is given by (6.14).

Thus we have an explicit, analytic, and closed expres-
sion for the overlap (7.5), which for fixed v, j, and m gives
the elements of a finite Hermitian matrix, as /' and / are
restricted by (6.23). The unitary matrix that diagonalizes
the overlap matrix, together with the square roots of the
eigenvalues of the overlap matrix, will allow us to transform
the nonorthonormal basis (7.2) into an orthonormal one.

It is sufficient now to calculate the matrix elements of
the generators of the sp(4, R) Lie algebra with respect to the
states (7.1), as the explicit form of the overlap matrix will
allow us to evaluate them and, if we wish, to transform them
to an orthonormal basis by the procedure indicated in the
previous paragraph.

We have then, using spherical components with index
g = 1,0, — 1 for the vectors, that

(v[1's] jm| A |vIs] jm) = v(v[l's] jlv[is] ), (7.8a)

(v[1's)jm’\Jq|v[is] jm)
= [jG+ D1V jm, g im ) v L's) jlvIis1 i)

(7.8b)
(v+ 1's) jm'|B }|v[Is] jm)
= (v[Is] jm|B9v + 1[I's] jm)
= (jm,1q|fm’Y (v + 1[1's] j||BY|vIis]j),  (7.8¢c)

where
(v+ 101’517 ||B|v[is] j)
= (=12 + 12
x{W+ LL7, 519 [(v+ 1+ 3T+ D)2
X (v + 1[I's]j|v + 1[I+ 1,s1))
+ W —11L7, 1) [(v =1+ 2)11'?

X{v+ 1[I's] j'lv+ 1[1 — Ls] i)} (7.8d)
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The values (7.8a) and (7.8b) are obvious, while (7.8¢) and
(7.8d) can be calculated by the same recoupling techniques
as the matrix element of a creation operators applied to
states of a particle with spin s in a three-dimensional har-
monic oscillator potential.'® Note that the matrix element of
B, can be obtained by Hermitian conjugation, if we lower the
index in (7.8¢),i.e, BY=(—1)'B_,.

With the matrix elements (7.8) we can carry out calcu-
lations for spectra and shape of many body systems in a
physical space of two dimensions.

VIIl. CONCLUSION

We showed in the present paper that the matrix ele-
ments of the operator K % with respect to boson states, which
are essential for the boson realization of the sp(4, R) Lie
algebra, can be obtained in closed form from the overlap of
sp(4, R) coherent states. Furthermore we used these matrix
elements for the explicit determination of those of the gener-
ators of the sp(4, R) Lie algebra with respect to the basis of
irreps of the positive discrete series for the corresponding
group.

Our analysis can be extended to sp(2d, R) where the
overlap of coherent states can be obtained by reasoning simi-
lar to that presented in Sec. V. In fact this overlap has al-
ready been determined for the case of sp(6, R) by Kramer
and Papadopolos'® and by Quesne.'* The determination of
the matrix elements of K > with respect to the boson states
corresponding to sp(6, R) can be obtained by a procedure
similar to that developed in Sec. VI, though it will be more
complex, as now the expression corresponding to (5.29) will
have three instead of two factors and the recoupling tech-
niques involve the SU(3) instead of the SU(2) group.
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APPENDIX: DETERMINATION OF (z'|A ™+ *|2)

The function (z'|A = **|z) can be expanded as fol-

lows:
(z'|A~*9|z)
© w [ — —w—s—k
S G |G U
k=01=0
(A1)
where the binomial coefficient ((E)=[p(p—1)

w(p—n+ 1)}/nl, whileu=z'+Z,and v=(z"+2') (Z*2).
Using the addition theorem of spherical harmonics it is
straightforward to show that

u’=1!4472' 2 % 1a(2) ¥ 10 (2)
1 a=— — A4 (l—/l)"(l-{—/{ + 1!
where the prime in the symbol of sum indicates that A =/,
{—2,...,0o0r 1 depending if / is even or odd.

Substituting Eq. (A2) in (A1), simplifying the binomi-
al coefficients, and with the change of index [ =y — 2k, we
get

, (A2)
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a= —A

% 47
|4,4 (2w + 25 — 2)!

J

where the coefficient 4, ; is given by (6.13a) and (z|yAa) by
(z|yAa) =A4,,(z-2) 7~ V7?Y (7). (A4)
The curly bracket in Eq. (A3) can be identified with an
hypergeometric function , F,(a,b;c;1), i.e.,
{}= Qy+2w+2s—2)!
(y+A+ Dy -

XzFl[— i+l »— 7/_'1;—7’—w+1;1 :
2 2
(A5)
This hypergeometric function can be summed?!
JFy(a, — mil) = =D (A6)
(€)m

where the symbol (a),,=a(a + 1)-(a+m —1).
From the equations (A3) and (AS5) we find that

(z’lA— (w+S)|z)

— (P+2w+25—A =3y +2w+25+4 —2)!!
Y;a Cw+2s -2 2w + 25 — )N

X (Z'|yAa) (YAa|z). (A7)

Taking the scalar product with (yAa|z') (z|yAa), we arrive
at the result given in Eq. (6.22).
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The precise meaning of the Fourier transform of |x|* is examined. A general expression is given
for real positive v. For odd v, derivatives of principal value integrals are obtained, while even v

gives rise to derivatives of the delta function.

Within the framework of quantum chromodynamics
(QCD) the basic quark—quark interaction is the one gluon
exchange. In addition, a widely accepted feature of QCD is
that it leads to confinement. As a consequence, the static
part of the effective quark—quark interaction is expected to
increase at large distances. A simplistic argument leads to a
linear power law!? as this is the one-dimensional Fourier
transform of the gluon propagator ¢ ~%; the one-dimensional
transform is taken to mimic confinement. The actual asymp-
totic behavior may well be different from a linear power
law.>* For a one-dimensional quark gas, sensible mean field
solutions can only be obtained for |x|*, v < 1; in this case a
clustering solution has been found to exist with an energy
lower than that for the uniform solution.’

In this paper we address ourselves to the mathematical
problem with regard to potentials that increase at large dis-
tances. In particular, the precise mathematical meaning of
their Fourier transform is scrutinized. This is of importance
since many practical calculations are performed in the mo-
mentum representation. We restrict ourselves to one dimen-
sion and consider

V(x) = |x|, v»0. (H

The Fourier transform does not exist a@ priori. A tentative
definition that is physically attractive is to consider the limit
of a screened potential, viz.

Vig) = limf e
#—0J _ o
which yields

—iax|x|"e M dx, u>0, (2)

_ . cos{(v + 1)arctan(g/u))
V(g) =2 (v + l)il_l.no RO

| q| v+ 1
Strictly speaking the limit is valid only for g #0. It is exactly
at ¢ = 0, where a precise meaning has to be given to V(q).
In actual applications one is usually faced with expres-
sions of the nature

£ (k) =f°° dq V(k — )g(q), 4)

where we now assume g(g) to be smooth and sufficiently
decreasing for large g. We thus consider

* 1
ky=rT Dl d
LK) v+ )Ml_r.noJ‘_m q[(y—i(k—q))”“

L ]g(q). (5

+
([.t+l(k—q))v+l
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Integration by parts yields

v u—0 (q k )
w1
+—1g'(q). 6
(q—k+i,u)"]g 7 ©

To facilitate the discussion we restrict ourselves for the mo-
ment to 0 <v < 1 and set kK = 0. Under the assumption that
g'(q) is analytic in a  neighborhood of ¢ = 0, the limit can

be rewritten as
(J‘ dg Zcosy;(v+1) 2(q)

I“(v+l)l
- v+l
+f dg|[ L=

l'V+1

|q|vei1rv

v
—— L4C)
lq|e

)v+l

dq—(——g (@) +

v+ 1

dq’—vg’(q)), )
G q ¢ 9

where the contours C; and C, are semicircles of radius u
around ¢ = 0 in the lower and upper plane, respectively. On
the same footing, the phases for negative values for ¢ in the
second integral are e ™" and e, respectively. Since, for
v < 1, ¢~ Vis integrable at zero, the limit can be taken for the
first two integrals, while each contour integral is of order

4" ~". We eventually obtain

fuhy = LD i L [ g BE=D) g

|k —ql”

(8)
which is well defined if the derivative of g is well behaved.
The cases v = 0 and v = 1 follow at once:

S(k) = 2mg(k),
as anticipated from ¥ (g) = 278(q), and

for v=0,

f(k)=2J’m —di,(q) g, for v=1.
o k—q

Note that in the latter case the two contour integrals in Eq.
(7) cancel in the limit z—0. For the principal value integral
to be well defined, the derivative of g(k) must actually be
Hoélder continuous.® In this case we can also use (v = 1)

flk g(‘])
R =

It is now a simple matter to apply the same principle for
v>1. Integrating in Eq. (5) by parts n times for
n — 1 <v<n, we obtain
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—2'(v+ 1) sin 1

k) =
Sk viv—1)e(v—n+1) 2

x|" ag [sg“‘qlv Lsgnta — Oy, 9
For even v it is known that
Vig) = (— 1)"276 (g). (10)
This is in accordance with Eq. (9), where
flk) = (= 1)"22mg (k) (11)

is obtained for v—n — 1 when Eq. (9) is used for odd n. It is
instructive to compare Eq. (3) with Eq. (10). Likewise, for
v—n, n odd, in Eq. (9), we find

v— d g(q)
=2(—1)¢ “’2( ) S dg. 12
fty=2(-1) )T —a (12)

Thus we have found a precise meaning of the distribu-
tion ¥(q) being the Fourier transform of |x|”. The physically
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interesting case is probably v<1, but larger values of v have
also been used.’
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Series of the type 22_, (n +A) [CA(1)]12~*—!-mQ1

:=1 Cﬁ(xh) ‘H5=1 Dﬁ(zi)

17, D (u ;) arestudied. Here C 4 is Gegenbauer’s polynomial, also called the “ultraspherical
polynomial,” and D} and D are Gegenbauer functions of the second kind. Interrelationships
and analytic properties are discussed, and closed forms for 24 of these sums are given, more than

half of which are new.

I. INTRODUCTION, DEFINITIONS, AND SUMMARY

A. Introduction and summary

Series! and integrals®>~ of Gegenbauer®’ (or ultraspher-

ical®®) functions and associated Legendre'® functions have
been studied for a long time. Closed formulas for such series
and integrals have proved useful in physical applications. On
the other hand, sometimes a new *“purely mathematical”
closed formula follows from physical considerations.''

Recently there has been much interest in series and inte-
grals of products of Gegenbauer and Legendre functions;
see, e.g., Askey,'? Durand,'*'* Rahman,'>'¢ Din,"” van
Haeringen,'#2° Askey et al.,”' and Rahman and Shah.*>**

In this paper we study a particular class S%,, (to be
defined shortly) of sums of products of Gegenbauer func-
tions. We obtain a large number of these sums in closed form
and discuss various interesting aspects. Especially when the
variables are situated on the interval ( — 1, 1) the evaluation
of certain sums can be tricky. In particular, S %,, turns out to
have a closed form that is quite complicated, even more than
claimed by Rahman and Shah??; we correct the closed form
for §%,, (in our notation) given by these authors.

Let us define the series

i Pl
S i 2 =S %m (XiseeesXisZ 1300321 U peeeslh )

i=ar 'S (A D[CHD] R
n=0

k ! m
X[ Crn) - [Ptz - [I D5y, (L1

h=1 i=1 j=1
HereII9_, : =1,
a;':=1/a, : =20""T(A)/T(A +1)

is included for convenience, and C7, D%, and D} are Gegen-
bauer functions to be defined below. In particular,

Ci(1)=Q4),/T(v+ 1),
where the shifted factorial (241), is defined by
(20, : =T (24 +v)/T(21).

We shall identify a convergent series with its sum. In order to
avoid the use of subscripts we shall not employ the variables
Xy,..., as in Eq. (1.1), but x, y, z, and u instead, and write
these explicitly only if necessary. Thereby we assign as many
variables as are needed to the Gegenbauer functions in the
standard order C#, D%, D2, Thus, for example,
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Cr(x)CH(2)D} (u)
Ci(l)

S50 (x,2,u) i =a;! i (n+4)
n=0

and

o

Shoxypzu) i=a;7 'Y (n+A)CHx)ICE(y)

n=0

XCH)DAw)[CH(1)] 2

The aim of this paper is sixfold.

(1) We wish to present in a systematic and compact way
closed expressions—in an elegant and optimal, maximal-re-
duced form—for all the sums S#,, that can be expressed in
terms of a single hypergeometric function.

(2) We wish to correct the expression recently given in
the literature? for $%,,.

(3) We wish to discuss several interesting relations that
connect the different sums S'%,,,, with emphasis on analytic
continuation.

(4) We wish to show how the closed forms under (1)
can be obtained in a simple way, and explicitly give a few
proofs.

(5) We wish to work out a few particular cases in which
the Gegenbauer functions reduce to more elementary func-
tions like sines and cosines.

(6) We wish to give some new formulas involving the
Gegenbauer functions.

We wish to give a systematic account of the sums S 7,
that can be evaluated in a relatively simple closed form. For
o:=23a, there are (° 7~ ') different sums to be distin-
guished. Thus for 0<o<s there are

s (a+p— 1)_(s+p)

020 o - §
different sums. In the present case p = 3; taking s = 4 we see
that there are (*% %) = 35 different sums S7,,,-

We shall give closed forms for 23 of these 35; in addition
we shall evaluate S%,, for the special case in which all the
variables are equal to zero; see Table I. We conjecture that
the remaining sums S'%,,, can be reduced at best to a double
integral.

We have evaluated many more series of products of Ge-
genbauer functions of a related type; these will be published
in the near future.?*
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TABLEL The 24 sums of the type S %,,, whose closed forms are given in the
text. Here kim standsfor S ,,, (x,y,z,u),0: =k + 1+ m,andd:=1+m
(k,1,m =0, 1,...). The members of the triads are closely related; for exam-
ple, 100 and 010 follow from 001 by analytical continuation, by application
of Egs. (1.9) — (1.11). The square brackets indicate a restricted case: 211
and 220 are evaluated only for A = 1, whereas 500 and 030 are evaluated
onlyforx=y=2=u=0.

o= 0 1 2 3 4 5
000 001 101 201 301
d<1 100 200 300 400 [500]
010 110 210 310
002 102 202
d<2 011 n [211]
020 120 [220]
d=3 [030]

The sum S %, was evaluated by Dougall,”® and S 7,, by
Rahman and Shah.?? Further, we obtained' S 32, which
was generalized to S%,, by Rahman and Shah.”> Sums that
follow from these by a simple reduction may be considered
as known, too, except for the conditions to be imposed for
the convergence of the series (see Sec. I1). The results for the
remaining sums (13 in total) of Table I are new, to the best of
our knowledge. Moreover, their interrelationships, especial-
ly by means of analytic continuation (Sec. II), have presu-
mably not been discussed in this form before. Not unexpect-
edly, the most complicated sums of Table I are those with
o=k+I14+m=4.

In general, A may be complex, with the exception of the
nonpositive half integers. We assume that — 24¢N unless
there is evidence to the contrary; the limits for A— — in,
neN, are easily evaluated (cf. Sec. VII). In some derivations
A must be restricted to 0 < Re A < 1; the final closed expres-
sions are then to be analytically continued in A.

In the closed expressions for S 7,,, to be given in Secs. IV
and V we shall restrict the variables of the C#’s and D%’s to
( — 1, 1), and those of the D?’s to (1, « ). These expressions
are then to be analytically continued in these variables. Al-
though straightforward in principle, analytic continuation
may be quite tricky: see, for example, the explicit expressions
given in Sec. IV for $%,, and S%,,. The symmetry relations
(1.17)-(1.19) are especially helpful here.

In Sec. VI we shall give closed forms for sums §%,,,, in
which all the variables x, y,... are equal to zero. In Sec. VII
we shall briefly consider the special cases A =1 and
A— — N. Section VIII contains a few elementary deriva-
tions. In Sec. IX we shall give an elementary derivation of
S'%: that is similar to the derivation of S }? given in Ref. 19;
Rahman and Shah?® have derived S%, in a slightly more
complicated way.

In Secs. X-XII we shall derive S, and S%,, in closed
form. Despite the complexity of these derivations we have
been able to express S%y, in a simple and elegant way, in
terms of the Legendre functions £; _, and Q, _,. Further,
we express S%,, in terms of the Legendre functions Q; _,,
P, _,,and P, _,; in this case we have to distinguish many
different cases (see Table II, Sec. IV).

939 J. Math. Phys., Vol. 27, No. 4, April 1986

B. The Gegenbauer functions C2(2), DX(2), and D% (2)

The Gegenbauer function of the first kind, C 4(2), and
those of the second kind, D % (z) and % (z), are solutions of
the differential equation
(1=2)f"(2) = (24 4+ Dzf'(2) + v(v + 24) f(z2) = 0.

(1.2)
They are also called ultraspherical functions. When v =n,
C* is Gegenbauer’s polynomial, also called the ultraspheri-
cal polynomial and sometimes denoted by P} (see, e.g.,
Szeg6®). We shall employ Durand’s definitions’>**:

Ci(z2):=[C(v+24)/THT (v + )]

X F (= vy + 204 4+ 31— 12) (1.3)
=7V2V2-4 (v + 2)/TAT(v+ 1)]
X (22 — 1)“/2)“/2_/1)%%2-11 112(2) (1.4)

and
e~ mDl(2) :
=[[(v+2)/TAWT(v+4 +1)](22) "%
XoF (W + A+ A+ v+ A+ 1;277) (1.5)
= g7 %A= VIV =4 T (v 4+ 20)/T(A)T (v + 1)]

X (22 _ 1)1/2(1/2—,1)@:,/*2-11 2 (Z) (16)
= i77.—1/2e—im1 [1-\(/1)] — 121/2—-1
X(Zz— 1)1/2(1/2—/1)Qi:;'/31/2(z). (17)

Here Re z > 0 is needed because of that part of the branch cut
of (22 — 1)* thatis associated with z2<O0. In the following we
shall mostly adopt Erdélyi’s convention? that (z*> — 1)* is
defined as (z — 1)* (z 4+ 1)*, so that the only branch cut is
( — «, 1], and Re z> 0 may be omitted.

It should be noted that D? (z) is often differently defined
in the literature, viz., as'?

e~ ™A T2 1)PA(2). (1.8)
The functions C# (z) and D2 (z) are analytic in the complex
z plane cut, respectively, from — oo to — 1, and from —
to + 1; C2(z) and e~ "™ D?(z) are real and increase (de-
crease) monotonically with z for z real, z> 1, and v and 4
real. The functions C%(z) and % (z) as defined above sa-
tisfy the same recurrence relations.'®

On — 1<x<1, C%(x) is defined as the restriction of
C%(z) to (— 1, 1); note that C%(z) is analytic there. It
follows that

Ci(x) =Di(x +i0) + e~ 2D (x — i0),

—l<x<], (1.9)

where + /0 means that the limit for €10 of the function with
the variable x + /e has to be taken.

The so-called Gegenbauer function of the second kind
“on the cut” ( — 1, 1) is defined by

iD%(x) : =Dl (x 4 i0) — e 2™ P (x — i0),

—l<x<]; (1.10)
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hence
e MPL(x +i0) =JeF™[CL(x) £iDi(x)],
—1l<x<l. (1.11)
Note that
[D4(2)]" =e~ D (2*), vandA real (1.12)

Then we have
Di(x) =2r"VR2V2-4[T'(v+ 2)/T(A)T(v+ 1)]
X(l __x2)l/2(l/2—z1)Q 1/3_;:1. 2 (x),
—l<x<], (1.13)

where Q# is the usual Legendre function on the cut. Note the
difference between

Dy(2) =ir~'Q, (2), (1.14)

D (2) =277'Q,(2), (1.15)
and

CY*(2) =P,(2) =%,(2). (1.16)

We emphasize that D2 (x) can be analytically continued to
the complex x plane cutalong { — o0, — 1] and [ + 1, ).
Indeed we shall need this function for complex x.

Further we have, for neN

CH—2)=(=1"Ci(2),
Di(—z)=(—1)""'D%(2), (1.18)
D —2) = (= 1)"e 2Pl (2), (1.19)

These symmetry relations are extremely useful for checking
closed formulas for the sums S'%,,,, and for extending (when-
ever appropriate) the region of validity of these closed for-
mulas. For example, a direct consequence is that

(1.17)

Im z20.

St (—x, —z,u) = S, (x,z,u), (1.20)

St (—=x,—zu) = — 8%, (xz,u), (1.21)
and

St (x, —z, —u) = 8% (x,z,u). (1.22)

Il. CONVERGENCE, ANALYTIC CONTINUATION, AND
CONTINUOUS EXTENSION

A. Convergence
The conditions for the convergence of the series S7;,

follow from the asymptotic expansions of the Gegenbauer
functions, which in turn follow directly from the well-known
asymptotic expansions® of the Legendre functions %, P%,
L4, and Q4. We find
CiT(A) =2"M"1(FP - 1)~

X[z+ (Z = D214+ 0(1/m)],
Rez>0, (2.1)
@é (Z)r(/l) — eiﬂlﬂ—lzl —;11/1— 1(22 _ 1) — (1/2)A

X[z+ (= D'~ 1+ 001/w)],
Rez>0. (2.2)

YV—>00,

V—> 00,

[Note that
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2+ (@ - D"z — (-1} =1]

The condition Re z > 0 is needed only for the correct defini-
tion of (22— 1)* [ =4 or —J4]. It may be omitted if
(22 — 1) is replaced everywhere by (z — 1)* (z + 1)~.
[See the remark following Eq. (1.7) and cf. the symmetry
relations (1.17)-(1.19).] The above expansions are uni-
form in z for z outside any fixed closed contour enclosing the
branch cut — o« <z<1.
Further, let € be fixed and 0 < e<0<7 — €. Then?

D% (cos 8 +i0)T(A)
=v'"1(2sin 9) —‘exp[iﬁ/l Fi{vO+ A0+ %ﬁ)}]

X[1+0(1/v)], v—w, (2.3)
C%(cos )T'(A)
=v*"1(2sin 9) ~*2 cos[v0 +A(0—4m) ]
X[1+0(1/v)], v—w, (2.4)
D%(cos )T'(A)
= —+""1(2sin§) ~*2 sin[v0 +A(0 —4m) ]
X[1+4+0(1/v)], v, (2.5)

and these expansions are uniform in 6 on [, 7 — €].

Let us define the functions on the left-hand sides of Eqs.
(2.1)-(2.5) at the apparent singularities A =0, — 1,... by
means of analytic continuation. Then the asymptotic expan-
sions on the right-hand sides of Egs. (2.1)-(2.5) are uni-
formin A for Re A> — L, for arbitrarily large real L. Thus
the series S7,, in Eq. (1.1) is uniformly convergent when-
ever

k i

II 1> + (x2 — 1) II = + (2 — 1)

h=1 i=1

X II lu; — & — D<n <1,

J=1

(2.6)

where 7 is fixed, (22— 1)"/2 is to be interpreted as
(z— 1)Y2(z + 1)'/2 [see the remark following Eq. (1.7)],
and |z + (2> — 1)"/?| may be defined as 1 when — 1<z <.
We point out that the equation

lz4+ (z— DY*(z+1)"?|=R, R>1 (2.7)
represents, in the complex z plane, an ellipse with fociat + 1
and — 1, with the major axis equal to R + 1/R and the mi-
nor axis equal to R — 1/R. When the left-most side of (2.6)
equals one, the associated conditions for convergence follow
also from Eqs. (2.1)-(2.5); we shall not consider this case.

Let us now consider in particular S 7,, and set for conve-

nience
x, =cosa,, z;,=cosf;; a,p.€ler—e], €>0.

We find from Egs. (2.3)-(2.5) that the series S%, is
(i) divergent for

(4—k—DReixl, (2.8)
(ii) absolutely and hence uniformly convergent for
(4 —k—DReA <0, (2.9)
(iii) conditionally convergent for
(4—k—DReli<«], (2.10)
H. van Haeringen 940



provided that

(i ta,+--tay+B,+B,+---+B,)/2mek
(2.11)

for all the 2¥*+/~! possible combinations of the signs +
taken independently from one another; outside fixed neigh-
borhoods of these “points of conditional divergence” the
convergence is uniform.

If any such combination equals an integer multiple of
2, the series S$%,, is in general divergent when

0<(4—k—DRed<], (2.12)
save in exceptional cases. For example, if one of the x,,’s and
one of the z,’s are both equal to zero, the sum in Eq. (1.1)
equals zero since C%(0) D% (0) = 0forn =0, 1,..., because
of Eqs. (1.17) and (1.18). Further, keeping in mind that
A #0, —}, — 1,..., wefind that S ¢y, convergesfor Re A <0,
S%(0) and S3,(0) for Red<i, S30(0,0) and
St6(0,0) for Re A <0, 5%, (0,0, 0) and S¢;, (0, 0, 0) for
Red<1,and $§%,(0,0, 0, 0, 0) for ReA> — 1, whereas
S$%(0,0,0,0) and S 34, (0,0, 0, 0) are divergent for all A.

As stated in Sec. I, we assume that the arguments of C
and D?# occurring in the sums S}, are restricted to ( — 1,
1), and the argument of D? to (1, « ), unless there is evi-
dence to the contrary. The closed forms to be given in Secs.
IV and V are valid on these intervals, as is indicated there.
Analytic continuation is always possible, provided the con-
ditions for the convergence of the series S}, are satisfied.
Thus an exception occurs for m = 0: The series S7,, (x,
¥,...) are divergent for general complex x, y,... outside [ — 1,
1], and hence analytic continuation of the associated closed
forms makes no sense. When m = 0 we always assume that
Egs. (2.10) and (2.11) are satisfied, so that the series S, is
conditionally and uniformly convergent.

According to Eqs (2.8)-(2.11), the convergence of
S %y is independent of A provided x, y, z, ue( — 1, 1) and the
special “points of conditional divergence” are avoided; S 75,
is conditionally (but not absolutely) convergent for all A.
Further, S%,, is conditionally convergent for > — 1 and
absolutely convergent for A > 0. Note that the inequality sign
changes from < to > when & changesfrom3to5 (fork =4
the sign is irrelevant).

It is interesting to note that taking the limit for zt1 or
zl1 ofasum S'#,, leads to another sum for which k + / + m
is decreased by 1, as follows from Eq. (1.1). This latter sum
requires for its convergence that A be further restricted. Let
us illustrate this with a simple example. We have

Ste(®) =ai ' S (n+HCH1)CA(x)

n=0

=2cosmA(l —x) =%, —1<x<l, Red<i

(2.13)

The limit for x11 yields O provided that Re A < 0; this is pre-
cisely the condition under which S %y, (1) = S&,, converges.
Indeed,
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Sko=a;7'S (n+D[CEDT
n=0
= a/l_ l/l BFZ(M)MJ' + 1/{91;1)v Re/{ <0-
(2.14)

This ,F, is well defined if Re A < 0 and it vanishes, as follows
from

=A "2 A=A F(24,24;1;2)
dz
= ,F(24,24;1;2) + 44z ,F, (24 + 1,24 + 1;2;2).
(2.15)
Moreover, by taking x| — 1 in Eq. (2.13) we get
lim St (x) =2""%cos7d, Red<l.
x1—1
The right-hand side agrees with S, ( — 1) except for the
condition on A:
St (=1 =a;'AF(20,24,4 + 1.4,1; — 1)
=2""%cos7d, Red<l. .17

{This follows by using Eq. (2.15) again.] The series
8% ( — 1) converges (conditionally) for Re A <} and di-
verges for J<Re A.

(2.16)

B. Analytic continuation and continuous extension

The sums 4, are analytic in the parameter A and in the
variables x;, z;, and u; in certain regions in the associated
complex planes that are interrelated. These regions can be
determined, for A and each one of the variables separately,
with the help of the uniform convergence of the series S 7,
(see below) and the following theorems (see, e.g., Titch-
marsh,’¢ pp. 3-8 and 95).

Theorem 1: Absolute convergence of a series implies its
uniform convergence.

Theorem 2: If @, |0 for n— o0 and x is real, then the
series 2, a, exp(inx) is uniformly convergent for x in any
closed interval not containing an integer multiple of 27.

Theorem 3: The sum of a uniformly convergent series of
continuous functions is a continuous function.

Theorem 4: The sum of a uniformly convergent series of
analytic functions is an analytic function.

It follows that the series S7,, (k,, m=0, 1,...) and
their sums are closely interrelated. Many of these sums can
be easily and conveniently evaluated in closed form by
means of analytic continuation and continuous extension. In
order to show how this is done in general we shall work outa
particular case in detail.

We start with the series S%), (¢), whose sum will be
derived in Sec. VIII,

St (w) = (u—-1)"%, all A. 2.18)

The series S &, (#) is uniformly convergent and hence,
because of Theorem 4, analytic in 4 outside the branch cut
( — o, 1], i.e., on the open set C\ ( — «, 1]. The right-
hand side of Eq. (2.18) can be analytically extended directly
to this open set.

1<u,
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Now we restrict A to Re A <4 and keep A fixed; then

8§40 (x) and S¢,,(x) are uniformly convergent series for
xe[6 — 1, 1 — 6], for any fixed 6€(0, 1). (We take & arbi-
trarily small.) Further we introduce, for this occasion only,

SA (u) 1 =8, (w)
i=a7' 3 (n+ HCHDHDE (W),
for ueC\ ( — o:,=;)],
S% (%) :=a;‘2°(n +A)CHDDE (x £10),

forxe(—1,1), (2.19)

where, as before,
D (x +i0) : = lim D} (x + ie).
€10

[One should be careful with this notation: Clearly x + /0
may not be replaced by x; also, D2 (x) is not defined for
x<1.] Thusboth S*, (#) and S* (u) are defined for u out-
side the point + 1 and the interval ( — o, — 1], while the
interval ( — o, + 1] is the line of discontinuity of both
functions. Now S*,_(u) represents a uniformly convergent
series of functions that are continuous in particular on the set

{u|6 — 1I<Reu<1 —§ and Imu»0}, 6>0.
Thus, according to Theorem 3, S (u) is upper continuous
on ( — 1, 1), i.e., continuous from ( — 1, 1) into the upper
part of the complex plane, and similarly S* (u) is lower
continuous on ( — 1, 1) [Im u<0]. This may be compared
with the right and left continuity of functions defined on the
real line.

Because of this upper and lower continuity of S*, and
S*_, respectively, on ( — 1, 1), we can derive the following
closed forms from Eq. (2.18):

S* (x) =™ lim(x +ie—1)~*
€i0

—_ eifr,{eq:ZifrA(l _x) — 24

—1<x<1, Red<i (2.20)

By using the relations (1.9)—(1.11) between C%, D4, and
D? we now get directly

St (x) =84 (x) + e~ ¥S* (x)

?

=2cos TA(l —x) ~ %, 2.2
S (x) = —i[S* (x) —e~ 8% (x)]
= —2sin7A(l — x) ~ %,
—l<x<l, Red<i (2.22)

The same procedure works in principle for all the series
S ... However, it becomes more and more complicated as
the number of variables increases. Let us consider another
example. The series
Seu(x2):i=a;7' Y (n4+A)D 5 (x)D;(2) (2.23)
n=0

is convergent for x inside the ellipse that has the foci + 1and
— 1, and that goes through zeC\ ( — «, 1]. As a function
of x it is analytic inside this ellipse with the exception of
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(—p, —1] and [1, p) [p:=}(R+1/R)>1; see Eq.
(2.7)], where it has branch cuts originating from the branch
cuts ( — o0, — 1] and [1, w0 ) of D% (x).

When o=k + I + m equals 3 or 4 the analytic continu-
ation is much more difficult because the closed forms con-
tain apparent singularities (branch cuts) that we have to
remove in order to get the “right”analytical structure. For
example, it is anything but a trivial matter to continue the
closed form to be given in Sec. IV for

St xpzu), xpyze(—11), l<u,

in the variable # analytically to the open set C\ ( — 0, 1];
nevertheless we know from the above discussion that it is
actually analytic there. We have carried out this procedure
for S%,, (x, y, z, u) only for the special case in which z = 0,
and derived in this way S,g(x, y, 0, u) and S%,, (x, y, 0, u)
for x, y, ue( — 1, 1). The closed forms for these sums in the
general case [ze( — 1, 1)] will be derived in Secs. X and XI
with the help of Eq. (3.1).

In general, care is needed with analytic continuation.
Let us consider, for instance, the two expressions to be given

in Sec. IV for §%;, . In the first, we require « > 2 in order to
guarantee that W >0 (see Sec. III C). The second expres-
sion possesses a branch cut for 1 < # < oo, which arises from
T~ W22 and T2, since T<O0 for 1 <u < «o. However,
this branch cut is easily removed with the help of the analytic
properties of O, _, . Another example is found in the expres-
sion for §4,, (Sec.1V). The Legendre function B, _, (z) [or
P,_,(z)] has a convenient representation in terms of
,F1 (1 — 2%), which is valid only for Re z > 0, and especial-
ly not for — 1 <z <0 (see Sec. III B).

Iti. AUXILIARY FORMULAS
A. introduction

In Secs. IV-VII we shall give closed formulas for a large
number of sums. The derivations of these formulas are some-
times quite lengthy. We have chosen not to give all these
derivations in detail, but to give instead a list of auxiliary
formulas that are most suitable for working out these deriva-
tions. Especially since the final results to be obtained are
given, the actual derivations should not be too difficult.

In Secs. VIII and IX we shall work out a few sums to
give the general idea, and in Secs. X and XI we shall briefly
derive the more complicated sums S %, and S %,,, respective-
ly.

Some formulas of the following list are presumably new,
but most of them follow easily from, e.g., Ref. 2.

B. Formulas involving Gegenbauer or ultraspherical
functions

First we give a few elementary relations that will play a
role:

arcsinh(iz) =i arcsinz = In[iz + (1 — 2%)'/?],
arctanh(iz) =iarctanz=§{In[(1 +i2)/(1 — iz)],
[(21) =7~ V22-'T(HT A +)),

(AL (1 —A) = /sin 74,
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r4+A)r({—4) =a/cos 7i,
a, :=2"%T'(2)/T*A),
a; '=27"T(A)/T(A+1))
=27~ "%cos TAT (A)T'(} — 4).

For definitions of the Gegenbauer functions, see Egs. (1.3)-
(1.10), for symmetry relations, Eqgs. (1.14)—(1.16), and for
the special case A =}, Egs. (1.11)—(1.13).

Next, let Re A>0,Rev> — 1, v + 24 #0,

ti=2a,(21),/T(v+1)=2a,C%(1),

= (1=-x)"2 y:=1-y)"7 xpe(—11),
and (note the difference)

2:=Z2-DY?, a:=w-1", zue(l,0).
Then

1
c’lf Cixy+3pt)(1 —tH*~'dt
-1

{Ct(x)Cé(y),
T lCci(—=x)Ci(—y),

if x + y>0,

3.1
if x + y<0, G-D

1
c:f C*(zu +7at) (1 — t)A~ 1 dt = CA(2)CA (u),

(3.2)
1
cf,f Di(xy+3pt)(1 —t>)*~1dt

-1

Ci(x)Di(y), ifx> +y,

Cit(D(x), ify> +x, 33)
T |Cci(—y)Di(—x), ify<tx, ’

C H(—x)Di(—y), ifx<+y.

(Each condition should hold for both signs + and — . For
x = + y take the appropriate limits; this procedure is con-
sistent.) For complex v these relations seem to be new. For
v = n they can be simplified with the help of the symmetry
relations (1.17)-(1.19).

Further'

1
cﬁf D (zu + Zat) (1 — 1A dt = C2(2) DA (w),
-1

ifl<z<u, (3.4)

e"'*cﬁrsaﬁ(zu +zZat) (12— 1)~ 'dt = DX (2) DX (w),
1

3.5
u—f"‘cif,wsoﬁ[xu (1—x*r]@*—1)*~tar
=[CiO )+ [Di™]
= de ™ 2" lim B} (x + ie)D (x — ie). (3.6)

The relations (3.1)-(3.6) are useful for deriving S7%,,, with
increasing k, /, or m. Note that (3.1) for v = O directly yields

1
1=2a,1f (1 —2)*—1qr
-1
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Next
D (cosh @) =™ 2“7~ !sin7d

Xf e W+ (cosh t — cosh @) ~* dt,

a>0, Red<l, Re(v+21)>0, (3.7)
=2 I'(v+ 20)[T2(A)T(v+ 1)] !
X(sinha)“”‘f e~ (vtix

a

X (cosh t — cosh @)*~ ! dt,
a>0, Reld>0,
v+ 24 #0. (3.8)

These two integral representations follow from the analo-
gous ones for £ (z); note that

T(v—pu+ e ™04 (z) =T (v +u + 1)e™Q #(2).
Other useful integral representations valid for veC are
e~ D) T2 BL(M T (v + A + )/T (v + 24)

=@— DA+ )24

Rev> —1,

1
XJ (Zj:t)-v_l(l _IZ)V+1—1/2dt
—1

1
— (zit)-—v-—u(l_t2)v+l—l/2dt’
-1

Re(v+4)> —4.
We have found for v—neN

(3.9)

1
@ﬁ(z)dz(z)=f Crin(1 =t~z —-p""a,
-1
Rei> —14,
d;(2) !=27re_i"4(z_ 1)/1—1/2(2_'_ 1)/1_1/2.

This relation does not hold for general »; in particular for
n= — litturnsoutthat C* , (¢) in the integrand should be
replaced by (z — t)/(1 —¢) and thus

(3.10)

1
D1, (2)d, (2) =f (1—t3H*=32dt =B34 —});
-1
hence
d; (2) =2ma, (A — )~/ | (2).
By applying Eq. (1.10) to Eq. (3.10) we get for D#(x) the
principal-value integral

1
Di(x) =711 =x»)"2-*] Ci()
-1

x(l_t2)1—1/2(x__t)~ldt,
Rei> —}, n=0,1,.. (3.11)

Equations (3.10) and (3.11) are very convenient for con-
verting C% into ©} and D 7, respectively, in series of Gegen-
bauver functions. Near the branch cut — o <z< —1 of
C?%(z), the branch cut — w <z<1 common to D?(z),
PB4 (z), and 0% (2), and the branch cuts —  <z< — 1 and
1<z < o of D%(z), P%(z), and Q*(z), the following rela-
tions are useful:

—l<x<l,
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Di(z+10) = +iCi(z) F2iet™e ™Di(2), z>1, This relation is not generally valid for Re z < 0. In particular,
Q%(z 4 10) = + Jime* VVDmRu () for —1<x<1, we have
+ eTWDimg—imup 2y 251,

0, (x+0)=0Q,(x) FlirP,(x), —1l<x<l,
Q(—zFi0)= —e*™Q (2), z>1,
B, (—zFi0)=eFT™P,(2) — 27 'sinm, (z), z>1.
Further we mention the quadratic transformation

Fi(a,1 —aye;z) = (1 —2)° ' ,Fy{i(c —a),

(c+a—1);c;4z —42%), Rez<) —l<x<l,
% ) : Py 1 (x) =tanwd [Q; _,(x)—Q_;(x)],

P,_(—x)= —cosmAP, _,(x)
+ 27 tsin 7AQ, _, (x).
Also
Qi_1(—x)=cosmAQ; _,(x) +imsin7iP, _,(x),
—1l<x<l,
TPy (—=x)=sin7d [Q, _,(x)+Q_;(x)],

valid for z = § and for Re z < }. This is a corrected version of

Ref. 4, p. 50. Related to this is —l<x<l,
P (2) =By, (2) = Fy (A4 — W51 — 22, and
Rez>0. Q_,(@)=9;,_,@2)—mcotmAP,_,(2), z¢(— oo,1].
}

C. Some special functions and relations involving x, y, z, and v

Unless there is evidence to the contrary we assume that — 24¢Nand Re v> — 1. Further,X : = (1 — x?)'/? and7,Z, and
# are similarly defined when x, y, z, ue( — 1, 1). The quantity T is always defined by

T:=4(1 —x)(1 —p)(1 = 22)(1 — u?).
Ifo:=k+ 14 m=4, weuse

W:=x2+p?+22+u*— 2~ 2xyzu.

For y—1 this reduces to W= x> + 2> + 4> — 1 — 2xzu, which we use when ¢ = 3. It is sometimes convenient to use the
notation with sines and cosines; we shall occasionally set

x=cosa, y=cosfS, z=cosy, u=cosd, a,B,y,0e(0,r).

There exist some interesting nontrivial (although elementary) relations that are useful especially when o = 4; direct proofs
follow from

cos @ —cos B =2sin §(B — a)sin §(B +a), cosa +cosB=2cos }(B—a)cos }(B + a).
In particular for S %y, %0, and §%;, the following equalities are useful:
[cos(a + B) —cos(y + &) ] [cos(a + B) —cos(y —8) | = [cos(a@+ B + ¥) —cos 8] [cos(a+B—y) —cosS],
[cos(a + B) — cos(y —8) ] [cos(a —~B) —cos(y +8) ] = W+ T2
[cos(a + B) — cos(y + 8) ] [cos(a —B) —cos(y —8) | =W — T2
Finally, for $%,, the following relations also play a role:
cos(a —p) —cos(y—8) _V—-W+ T'? cos(@a—pB)—cos(y+8) V_—W—-T?
cos(a +B) —cos(y —8) V—W—TY> costa+B) —cos(y+68) V_—_W+TV?
Here
TY2=2sinasinBsinysind, W:=x>+y*+2*+u*>—2 — 2xyzu,
Vi=(zu+7Zu)(zu +2ua — 2xp) + x> +y* — 1, V_:= (z2u —Zu)(zu —z4 — 2xy) + x* +y* — 1,

from which we obtain
V=W+2zZu@@ii +zu —xy), V_=W+ 22u(Zu —zu + xy), VV_ = W2 T,
V+V_=2W+42°%%, V—V_=4zu(zu — xy).

When dealing with functions of four variables we find, not unexpectedly, that even elementary derivations can be quite
complicated. For example, let us consider the first expression to be given for S%,, . Here we must avoid the branch cut

associated with W < 0, which arises from W ~*; this is the reason for which u > /2 is required there. This condition is necessary
and sufficient. We shall prove that

W>20W>0, Vxypze( —1,1), u?»20W>0, Vxyze( —1,1);
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the equality W = 0 occurs only for > =2andx =y =z =0. Since W = 1* — 2for x = y = z = Oit is obvious that the above
inequalities are optimal. The proof of the above statement follows from

W) =u’ —2pzu+ x>+ P2+ 2 = 2=t + t+ t;, 1= (U £V2) ( F V2 — 2xp2),

= (x+y22)%50, f;:=}—§(1-2*)(1—22%)50.

Itfollowsthatt, > Oforu > 2 (takethelowersigns),andforu < — 2 (taketheuppersigns). Further, #, = ¢, = Ooccursonlyfor
x =y = z = 0, which completes the proof. It is interesting to note that the zeros u , of W(u) are real:

u, =xyz+ [(1—-p)(1 =2 + (1 =x*) (1 —y’2)]"7?,
and that |u |<\/f is equivalent to
X2+ + 2% + 2{2xyz=t, + £,>0.

IV. CLOSED FORMULAS FOR S}, WITH/+ m<1

We have the following:

Sti(w)=e(u—1)"% 1l<u, alld, Sip(x)=2cosmA(1—x)"*, —1l<x<1, Red<|,

Sto(x)= —2sin7A(1 —x) =%, —1<x<1, Red<};

Sty (u) =e™(u—x)~%, —l<x<l, l<u, alli,

Sio(x2) =2cos7A|z—x|~%, xze(—11), Red<},

Stox,z) = +2sin7md |z—x| %, ifzzx, xze(—11), Red<};

St (x,z,u) =e™W ~*, x,ze(—11), 1<u, ali,

Wi=x4+24+12—1-2xzu=0z—u)*—(1—-x2)(1-2z?),
20—-W 4 ifW<O,
2cos TAW ~4,  if W>0,
0, if W<0 [xz — Xz <u <xz + Xz,

Sto(xz,u) =2sinmAW 4, ifxz+X2<u [W>0], xzue(—11), W:=x>+22+u*—1—2xzu

—2sin7AW ~*, fu<xz—xz [W>0],
8% (X, y,2,u) =W~ F UAM + A + 5TW ™), 212 <,
=™, 2t HIT WA, (WT~V?), Reu>1, Imu>0,

T:=4(1-x)(1 -1 —-z)(1—u?), W:=x>+y" +22+u*—2—2xyzu,

xpze( —1,1), alld 2Y2<u=W>0).
For convenience we rewrite this as

St (x,yzu) =™y _ (@)U, o :=WI2, U :=a,?*' T~ WM =T -WD41-4T(24)/T 2(4) .
Then

S’;oo(x,z,u)=[ xzue( — L,1), W:=x*>+22+u*—1—2xzu,

(2 cos 7AQ, _, (@) U;, ifl<w,

Stox, y,z,u) =420, _,(—a)U,, if —1<w<l, x,pzue(—11), ali,
20, _, (- @)U, fo<—1,
[+ 2sin 749, _, (@) U,, ifl <o,

Sho(x,yzu)=1{ +7P_,(—w)U, if —l<w<l, xyzue(—1,1), alli,
(0 or +27 B, _(—)U;, fo<—1,

where the different cases (0 or + --; 24 in total) are given in Table II. In this table, Q stands for 2 sin 7AQ, _, (w)U,, P
stands for 7P; _, ( — w)U,, and P stands for 78, _, ( — @) U, . It should be noted that P, _, and B, _, denote one and the
same Legendre function (whereas @, _, differs from £, _, ). Out of the many representations in terms of ,F,’s for this
function we mention here

PA—I(_w)=S‘B,1_x(—w)=2F1(y~,i—M;l;l—w2),
which holds only for Re @ <0. In particular for — 1 <@ < 1 we have
P,_(—w)= —cosmAP,_ () +2r 'sin7AQ, _,(®), —l<w<].

945 J. Math. Phys,, Vol. 27, No. 4, April 1986 H. van Haeringen 945



TABLE IL Twenty-four cases for thesum S}, (x,p,z,u), x,p,z,uc( — L 1), %= (1 —x)V3,5: = (1 =)V, 2 = (1 ~ 22)V%, % = (1 — 4?)/?, and ¥,
5, Z, @€(0, 1). The third column defines the six cases indicated by 1-6. The second column shows in which interval w: = WT ~'/? is situated. The signs of
uZ 4 #iz (1ast two rows) define the four different cases denoted by A-D. The entries + Q, + P, + 20, and Oin the 6 X 4 matrix give the value of S %, (x,, 2,
u). Here Q stands for 2 sin 74 9, _, (@)U, Pstandsfor7 P, _,( — @)U, andBfor7vP,_, ( — ) U,.

case ) Definition of the cases 1-6 A B C D
1 l<w Zu +Zu <xy — Xy Q -2 9l —-Q
2 —l<w<l Zu —ZU <Xy — Xy <z2u + ZU <Xy + Xy P —P P —-P
3 w< —1 Xy — Xy <2u + ZU <Xy + Xy 2B 0 0 —2B
4 o< —1 Zu —ZU <Xy + Xy <zu + 24 0 0 0 0
5 —l<w<l Xy ~Xy<2ZU —~ZU <Xy + Xy <2ZU + 2U P P —P —P
6 l<w xy+Xy<zu —Zu 2 Q -2 -0
Definition of _
. u+zor uz+ uz + + — —
Slgnof[ o
u—zor uz —uz + — _
the cases A-D

Note on Table II: For z,u € ( — 1,1) we have
sgn(u + z) =sgn(uz + uz) , sgn(u —z) =sgn(uz — uz),
where the signum function is defined by

1, x>0,
sgn(x) : = 0, x=0,
—1, x<O.

Proof follows directly with the help of, e.g.,
cosy+cosd=2cosy(6—y)cosi(6+7y), cosy—cosd=2sini(6—y)sini(d+y).

The cases u = + z (4Z + %z = 0) can be included in Table II by taking the appropriate limits. That this procedure gives
consistent results follows by making the following observations.

(i) u + z = O is possible only in the cases 1, 2, and 4. Then clearly 4 and C give the same result, as do B and D. Thus for
#+2z=0weget + Qincase 1 ( 4+ Pin case 2) according tosgn(u —z) = + 1.

(ii) ¥ — z = Ois possible only in the cases 4, 5, and 6. Then 4 and B give the same result, asdo Cand D. Thusforu —z =0
we get + Pincase 5 ( + Qin case 6) according tosgn(u +z) = £ 1.

(iit) # 4 z = 0 (i.e.,, u = z = 0) is possible only in case 4; then 4, B, C, and D give the same result O.

We emphasize that the above results for S %, and $%,, are in agreement with the symmetry relations in Eqs. (1.17) and
(1.18).

The result for S%,, given in Ref. 23, Egs. (3.7)-(3.9), comes down in essence to column B of Table II. The six cases 1-6
are equivalent with those in Eq. (3.9) of Ref. 23 (corrected for a misprint); however, Eq. (3.8) of Ref. 23 is correct only for
W > 0 [see the representations for P, _, ( + x) in Sec. III].

V. CLOSED FORMULAS FOR S, WITH/+ m = 2

We have the following:

Stn(zu) =™ (u—2z)"?D(E), ¢ :=wz—1)/(u—2), l<z<u [1<{], all4,

Sty (zu) =™ —2) "D, ¢ i=(wz—1)/(u—2), —1l<z<l, l<u [—1<{<l1], alld,
(u—z)"*[2cosmA —d4e ™ D5(—§)], if —l<z<u<l [{<—1],
(z—u)~*[2cos 7A — 4~ ™DG( )], if —l<u<z<l [§>1],
Ei=(uz—1)/(u—z), Red< 1,

S, (Xzu) =e™W A DE(E), ¢ :i=(uz—x)W ', —l<x<l, 1<z, l<u [§>1], alld,
W =x24+24+u*—1—-2xzu=(u—xz)’+ (- 1)(1—-x2?)>0,
SH, (xzu) = e™W DY), ¢ i=(uz—x)W ™2, xze(—11), l<u [—1<§<l], alld,
W i=x24+224+u*>—1-2xzu=(u—xz+X2)(u —xz—-X2)>0,

ngo (zu) = [
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2i(— W)~ *Dilituz —x)(—W)~V?], ifW<0 [zu—Zu<x<zu +Zu),
Sho(xzu) =W ~*[2cos TA —4e~™DF (-], ifzu+zui<x [W>0, (< —1],
— W *[2cosmd — 4D} D) ], ifx<zu—zu [W>0, {>1],
xzue( —1,1), Reld<l,
W =x’+224+u*—1—2zu=(x—zu+za)(x —zu —zu), ¢ :=(uz—x)W-"2;

1
St (x, y.z,u) =20192WJ (1—t2)*A- %4t
0

' T1/2 12
=e2""2“a,ll"‘V_‘Fl(/1,/1,ﬂ,/l+1; Wt Ww-T )

v 2

£ 1= [ W+ (zu)?] + 2Zua(zu — xy) + (Zu)*, W := (xy —zu)* - (3p)*> — (zu)?,
V:=W+2ZuGi+zu—xy), T"V?’=2%pzu, X :=(1—-x»)"% 3:=(1-y»)"?
xye(—=L1), z:=F-DY?, u4:=@*=1)"? 1<z 1<u alld.

Now S4,, and S%,, can be expressed in terms of the same Appell function®? F,. Finally, S &;, and hence S¢,,, S, , and
S %50, can be expressed in terms of a double integral in various ways.

VI. SPECIAL CASES FOR ZERO VARIABLES
When we take the variables X, ¥,... equal to zero we get from the definition of S},, a hypergeometric function e+1 Fy
(-+; + 1), by using
C}ni1(0) =0, C3,(0)=(—1D"(A),/m!,
Pm+t TrA+1) A+ Dn .
CAT@ @)
Note that S7 4, (0,...,0) and S0 (0,...,0) with — 24¢N are convergent iff
(4 —~k)ReAd<0, forkeven; (4—k)ReAd<l, forkodd.
From the closed formulas of Sec. V we thus obtain simple expressions for these , , ; F, (- + 1). The results are as follows:
Sto =a; ' A F (24,244 4+ 1,4,1;1) =0, Red<O,
St0(0) =2cosmd =a; 'A F3(AAA + 31 + LA MLLE — 1), Red<d,
S50 (0,0) =a; ' A,F(AA41+434,151) =0, Red<0 (for A—24 same ,F, as for S),
S§%0(0,00) =2=a;"'A F(AAL1 +3AUMA+415—1), Red<l],
S 4 (0,0,0,0) diverges for all A,
8500 (0,0,0,0,0) =2 ,F,(AALA + LA + 51)
=27r"T(A + PIT )] LEGLELA + 51
=a; ' A FsAALLI + A+ LA+ LA+ 4,1, —1), Red>0;
—2, forAl0,
=4G, ford=1 (G=0.916is Catalan’s constant)
=1r7°T*(}), fori=1};
§40(0) = —2sinmd = —84(A + 1) F5(4 + 1,4 +44 +4L1 + 541 +4,35 - 1), Red< |,
ngo(oyo) = —4q;, A = 16a, (A + 1) JF3(14 + i/i + 5:% + 3 5/1 + 4,351, ReA <0,
—880(00004(4a;) > =24+ 1) sFo(LLA+ A+ + 5 U+ A+ 135 - 1)
=3F(LA + 1434 + 1) =17 .F,(L3LA4 + L1;1)

D},.(0)=0, D3}, ,(0)=(—

1
=AJ t*~'K(t'*)dt, ReA<1 (K isacomplete elliptic integral**),
0

=2, fordtl; =1, ford=—§ =3 fori= —}
S0 (0,0,0,0) diverges for all A.
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VII. THE SPECIAL CASES A =1AND A— — N

There exist many interesting special cases of the sums S'7,,,. Here we shall briefly consider the casesA = 1 and A— — N,
N=0,1,....
The case A=1: Here it is convenient to set x = cos 8, 0 <@ <7, and z = cosh 8, 8> 0. Then we obtain, for neN,

C!(cos 8) =sin[(n+1)8]1/sin 8, C(cosh §) =sinh[(n + 1)8]/sinh 6,
D! (cos @) =cos[(n+1)0)/sin8, D)(cosh8) = —exp[ —(n+1)8]/(2sinh @) .

By inserting these expressions into S',,, we obtain sums that can be regarded as generalizations of the elementary trigonome-
tric sums

i n~'sinfn=4nr—0), 0<0<2m, i n~'cosfn= —In(sin} @), 0<O<2r.

n=1 n=1

We shall give closed forms for a few sums S'},,, for which k +/ + m = 4.
Let T, ¥, and W be defined as in Secs. IV and V, and

x=cosa, X=sina, y=cosf, y=sinf, a,Be0r).
Further we take
z=cosy, z=siny, u=cosd, u=sind, ¢,0e(0,7),

unless otherwise indicated. Then

. _ W i( - T 1/2
Sto G aa) =i =D [SEESI] 1

_ V—_W+T'? _ 2w+ (- DV - 1DV —xp 4+ Xy
Sl (x,yzu)=4T"2In ————]: T 1/zln[ ],
22 (%5, 54) = y_w_r] "} zu+ (22— DV2(2 - 1)'2 —xp —%p

1<z, l<u,

Shn (6 pzu) =3 — T)—1/21n[ w’ +2 — 1 — 2uz cos(a — B) + cos’(a — B) ]

Ww+22—1—2uzcos(a + B) +cos’(a + B)
=5(_T)—‘/21n[“_°°s(“’ﬁ +y) u—cos(a—B—y)

u—cos(a+ B +vy) u—cos(a+ B—vy)
cosd —cos(a+ B +y) cosd—cos(a+ B—7)
cosd —cos(a—fB +¥) cosé—cos(a—LB—7)

, l<u,

So(x,yzu)=T"21n

= -2y, |Cost@+ B) —cos(y +6) cos(a+ B) —cos(y —98)
cos(a — B) — cos(y +8) cos(a— B) —cos(y—8) |’
8$1,00zu)=(—=T)""In[(u—2)/(u+2)], —T=41-2z>(u?>-1), —l<z<l, l<u,

u+m—z_mu—m-z
u+i0+z u—i0+4z
810(00z,u) = Za) " 'In|(u+2)/(u—2)|, zue(—11).
f

Sho(00442) = 27) " [1n | waec- 10,

The case A—0: We get, for n =0, Clearly, insertion of these expressions into S'%,,, yields sums
that are similar to those that apply to the case A = 1. Let us

limC§(z) =1, lim®;(z) =1, give a few examples:

A—0 A0

limA ~'D¥(x) =2arcsinx, —1l<x<l. lim S15, (x,z,u) =4,

A—0 A—0

For n>0 it is convenient to set, as in the case A =1,
x=cos 0, 0<O<m, and z=cosh 8, 6>0, respectively.
Then we find, for n = 1,2,...,

lim A~ 'Sty (x,z,u)
= 2 arcsin §

: -1 4 9y, —1 . CR . B
}11_’2'1 Cr(cos ) =2n""cosOn, =2arcsinz—4 Y n~'cos ansinyne ~°",

n=1
limA ~!' C#(cosh §) =2n~'cosh én, (i=(uz—x)W V2 x=cosa,
A—0
z=cosy, u=coshé.
limA ~'D%*(cos ) = —2n~'sinén,
A-0 lim A ~'S %y (x,2,u)
A0

. — A a1, —6n
,1{11_2/1 1Dt (cosh @) =n~"le” . = 4i arcsin[i(uz — x) ( — W)~ V2]
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5§

n=1

n~! cos an sin yn sin én,

W<0 (u=cosd).

Because of the identity

iarcsinz =In[iz + (1 —z2)V?],

this leads to

<0
S n~!cosansin yn sin én
n=1

= }iarcsin[i(uz — x)( — W) 2]

=y (xouz+uz 1. fcosa—cos(y+6)
=z ——7"57 )= ’
2 (—w 4 cos(y —6) —cosa
if W <0 or, equivalently, if both the numerator and the de-
nominator of the last fraction are positive.
The case A—— 1: After analytic continuation with re-
spect to A we obtain

Cilm=1, C['@z)= —2z
C, ' (2)=1, C7Yz)=0, n=34,..,
D @) =4 ¥T'2)= —z

D72 =4 D7'(2)=0, n=34,..,

D 'Y(z2)=0, n=0,,...

Substitution of these expressions in the sums yields in many
cases the equality O = 0. However, new interesting sums are
generated as follows.

The case A—— N: It turns out that the limits

lim (A +N)"'D% , y(2),
A—»—N
N=01,.; m=0,+1,4+2,.,4+N,
exist and that the resulting expressions are even in m. Hence
2N I
li A —! 2z)=0.
A~IPN,,§o (n+A)(A+N) il;[l D (z)=0

Further we find, for n>2N + 1,
lim (4 +N)~'D#(z2)
A—+—-N

— _22N+1(N!)2[(2N+ l)!]—l(l _22)N+ 172
XCY 1 (2)/CY ¥y 1 (1),
n—2N—-1=0,1,...
Clearly we obtain in this way from S¢,,, A— — N, sums of

another, related family of sums of products of Gegenbauer
functions.?*

VIil. A FEW ELEMENTARY DERIVATIONS

We can easily verify that Eqs. (3.1)-(3.6) (withv = n)
are convenient for generating closed forms for the series
S%» with increasing k, /, or m. Further, Egs. (1.9)-(1.11)
are suitable for transforming (i) 2 into either C# or D%,
and (ii) C# and D# into 2. Finally, we can convert C# into
D or D? by applying Egs. (3.11) and (3.12), respectively.
However, in order to be able to start this process of generat-
ing closed forms, we must know at least one of the sums S %,,,
in closed form, where kX + / + m > 0. We choose S %, and we
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shall now give a short derivation of this sum. Further we
shall briefly evaluate $%,, and S%),.

For evaluating S3,, in closed form, Eq. (3.7) is most
convenient. We get

S&, (cosha)
i=a; ' 3 (n+4)(20),, (n) "} Di(cosh @)
n=0
o a'{— lelﬂilz—/lﬂ.—l
Xsinmlf e~ * (cosht — cosha) ~*

XA JF (24,4 + LiAe ™)t .
This is reduced by substituting

Fi(2AA+BAz) =(1+2(1—-2)~ 1.
Inserting cosha=1+2sinh’}a and introducing 7
: = sinh }¢ /sinh }a we reduce the above integral to

(sinh;a)-‘m’—“f (r2—1)~*r~*"'dr
1

= (cosha — 1)‘2"/12"‘"- (x—=1)"*"*"'dx.
1

The latter integral equals B(1 — 4,24) =T'(1 —A4)I'(24)/
I'(1 + A) and thus we get directly

S&, (cosha) =e™(cosha — 1) =2,

In order to derive S%,, we use Eq. (3.4) and obtain
1

Sior (2u) =2a; f Stor (zu +Z@ (1 —1)* =" dr
-1

= eiﬂA(u -—Z) —2/1’

l<zcu, Z:=@* =DV, 4 :=(W?-11"2,
where we used
1
2a4f (E+0)~2(1—12~dr=(£2— 1),
-1
{>1.

In exactly the same way we find
1

S0, (xzu + Zut) (1 —tH)* 1 dt
-1

=eim1w—l’
W . =x24+224u*—1—2xzu
=(w-x2)2—-(1—-xH1-=-2%.

St (xz,u) =2a,

IX. ELEMENTARY DERIVATION OF S%,,
Let now x, ye( — 1,1), z,ue(1, ), and
%:=(1 _xz)uz, j:=(1 __y2)1/2’
Z:=F-D" u:=w-1"2.

Then

S 301 (%, y.2,4)

1
=2a,1J- St (x, pzu +zut) (1 —t2)*~1dt
-1

1
= 2a,1e”"f l[(zu +zut — xp)? — (xy)?*] 4
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X(1—tH)*— 14t
=ei1r}.a/12/1+lT—(l/2)/1Q/1_l(WT—1/2) ,
TY? . =2xpzu >0,
W = (zu —xy)* — (Zu)? — (3p)?
=(@x—w)+(*-1)1~-x?)
+ W —-1)(1-y")>0.

The last integral here can be evaluated in an elementary way
as follows.

With the help of
Ti=(a+c—20)"*a+c+26)""*A—0)(1 41"
and

Jw (A1 +28r+7% - 4dr
0

=21—A(32_ 1)_“/2MDA——I [3(32_ 1)——1/2] ,
Ref>0, Rei>0,
we obtain

1
f (@a+2bt+ct?)~*(1—tH*dt
-1
=22/1—1[(a+c)2_4b2]—(1/2)/1
XJ (14+28r+72) "4~ 'dr
0

— 2/1T —(1/2)/1D"1_1 (WT—”Z) ,
B:=(a—c)(a+c)>—4b?) 12,
in the present case @, b, and c are to be identified as
a:=(zu—xp)* — (3%

b :=Zu(zu — xy),

¢ :=(zu)?,
and thus
b*—ac=T/4, a—c=W,

(a+c) —4b =(a—-c)*—4(b*~ac)=W?>—-T,
B=WW?-1)"".

X. DERIVATION OF S},

In this section we shall derive S%,, from S%,. By em-
ploying Eq. (3.1) again, we obtain

o0 (x:p.2,u)

=2a, J-lISQOO(xy+J?it,z,u)(1—tz)“ldt,
x,yzue(~11), X :=(1-x3)"
==y,

Let further?z : = (1 —22)'%, 4 : = (1 —u®)"?
t, =(utzu—xy)/xy [t_<t,.],
p() 1=4a,(3p) Pt —1.)

X(t—t )] 1=,
n(t) :=4a,(3p) " P[—-(—1t_)
X@—t )] A=t
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We express the six cases 1-6 defined in Sec. IV, Table I, in
terms of £ and ¢_. Thus we obtain from the closed expres-
sion for 84y, (Sec. IV) for S%, the expressions given in

Table III.

In Table III,
1

pl:=f P(t)dt, t:t<—1’
-1
1

Ps 1= P(t)dt, 1<t:t »
-1

1
P2 ==J pde, t_<—1<t,. <1,
t

psi=| pyd, —1<t_<l<t,,
-1

D= _p(t)dt, —1<t, <1,
-1
1

Pé :=J. P(t)dt, _1<t:t <1,

d

an

L

n, := n(t)dt, t_<—1<t . <1,
—1
1

n5:=f n()dt, —l<t_<l<t,,
t_
L

n3:=f n(t)yd:, —1<t, <1,
t

1
n4:=f n()dt, t_<—1, l<t,.
~1

These integrals are invariant under the transformation
x— —x and z— — 2, as follows from the closed expres-
sions to be given shortly. Under this transformation we get
t,—>—t_,t_——t,,and hence p(t)— p( —¢) and n(¢)
—sn( —t), so that

P1=Pe P2=DPss P3=p;, andn,=ns.

The integrals p, and n; reduce to hypergeometric-func-
tion integrals after elementary transformations. The result-
ing hypergeometric functions ,F, are most conveniently ex-
pressed in terms of the Legendre functions P, _,, B,_,,
£,_,,andQ _;. Using, as in Sec. IV,

@ = WT—1/2’ Uﬂ. :___0/12/1+1T—(1/2)/1,

we obtain

TABLE II1. Expressions for S %, in the same six cases as defined in Table
IL

case w condition on ¢, S0
1 l<w t, <—1 P, cos A
2 —l<o<l t_<—1<t, <1 n,+p,cosmd
3 w<—1 —l<z, <1 picos A + ny + p3 cos wA
4 w< —1 t_<—1, l<t, n,
5 —l<co<l —l<t_<l<t, pscos mA + ng
6 l<o l<t, Pe COS TA
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=2, (U, l<o,

pp=(m/sinmA)P,_,(—a)U,, —l<o<l,
py= (w/sin7)P,_,(—a)U,, w<—1,
n,= (w/sinmA)P, _(0)U;, —1l<w<l,
n,=20_,(-a)U,;,, w<-—1,
n=20,_ ,(—o)U,, o< —1.

The actual derivations of these expressions are quite lengthy
and are therefore omitted. We note that p,, p,, and p, have
been derived by Rahman and Shah?® (in a different nota-
tion). Our result for p, agrees with theirs, but for p, and p,
there is a slight disagreement. To be specific, Eq. (A13) of
Ref. 23 is valid only for Re z <} and consequently Eq. (3.8)
of Ref. 23 is correct only for W > 0; the ,F, given there equals
P, _,orP,_,onlyif W>0.

By inserting the above closed forms for p; and n; into
Table I1I we get closed forms for S %, . These are recast into a
more attractive form by using the relations®—

P, (x)+cosmAP, ,(—x)
=27 'sinmAQ, _,(—x), —1l<x<l1,
and

Q_,;@)=9,_,(z)—mcot TAB, _, (2),

z¢( — 0,1] .
Thus we obtain in cases:

1,6: p,ycosmA =2cos mAL, () U,, l<w,
2,5 pycosmd +n,=20, ,(—0)U;, —-l<cw<l,
3 : 2pscosmd+n,=20,_ ,(—a)U,, w<—1,
4 n,a=20; ,(—eo)U,, w< —1.

This completes the derivation of S ioo (x, y,z,u).

XI. DERIVATION OF S},

Let us now derive S%,, from S%,,. By employing Eq.
(3.1) again we obtain

1
St (x, p2) = 24, f S (xp + Ftau)
—1

X (1 —t2)*"'dr. (11.1)

We use the same notation as in Sec. X. Let us first recall the
closed expression for $7,,:

Sto(xzu) =0, if W,<0, (11.2)
=2sinmAW 4,
ifxz+xz<u [W,;>0], (11.3)
= —2sin7TAW 4,
ifxz—xz>u [W,>0], (11.4)

where

W, :=x>+22+4+u*—1—2xzu.
First of all, W, <0 is equivalent to

U —zZu<x<zu +zu .

Replacing x by xy + Xyt we see that this is equivalent to
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t_<t<t,,
where, as before,

t, :=(zu+Zu—xy)/3y.
Thus we see from (11.2) that §;+ - =0in Eq. (11.1). We
distinguish again the six different cases 1-6 of Tables II and
II1. Moreover, the conditions xz + XZ<u and xz —XZ>u
occurring in S%,, are not suitable for direct application in
Eq. (11.1). Therefore we convert these conditions as fol-
lows:

xz+xzZ<uSeitherzu +zZu<x and 4z —u4z>0
or zu—2zu>x and uz+44z>0,
xz-XxzZ>u<eitherzu +zZu<x and uz —uz<0
or zu—zu>x and uzZ+4z<0.

Thus we get the positive sign from Eq. (11.3) if either

t,<t and uz—uz>0
or

t_>t and uz+uz>0,
and the negative sign from Eq. (11.4) if either

t, <t anduz —uz<0
or

t_>t anduz+uz<0.
In this way we find for S%,, (x,y,z,u)/sin 7A the expres-
sions under the associated conditions as displayed in Table
Iv.

In Sec. X we have given closed forms for p,, p,, and p,.
By substituting these expressions we find that the above re-
sults lead to the closed forms for S %,, given in Table II, Sec.
IV. Thus Tables II and IV give the same information, pre-
sented in a different way.

Apparently our result for S%,, differs from that ob-
tained in Ref. 23. In our opinion, the statement directly fol-

lowing Eq. (3.2) of Ref. 23 is incorrect and this leads to
unjustifiable simplifications.

XIl. PARTIAL SECOND DERIVATION OF S3,,

Let us finally employ Eq. (3.3) for deriving §%,, from
S%10- Using the symmetry relations (1.15)—(1.17) we ob-
tain

1
Cﬁf Di(xy+xpt)(1 —t>)*~'dt
-1

B [C:}(x)Di(y), ifx> + y,
“l=Cclbiy), ifx<+

where each condition should hold for both signs + and —.
By interchanging x and y we get two other expressions that
give, however, no new information. Defining

1
S :=2a, f Stio(zuxy +Xpt) (1 — )2~ 14y
—1
we obtain

S— {S;.lo (X,.V»Z,u), lf [x> iy@xyii,">0],
—Sho(x,yzu), if[x< £y & xp+ Xy <0].
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TABLE IV. Expressions for S3,,/sin 74 in the same six cases as in Tables IT and III.

case conditions on 1, S4o/sin A
1
1 r, < —1 if p(t)dt= +p,, uz— uz=0
-1
1
2 t_<—l<t, <1 ifp(t)dt: +p,, uz—uz20
;
3 —l<t_<«t <1 ifp(t)dt: +ps, Uz —uz20
plus + f p(Ddt= +p,, uE+izz0
~1
4 < —1 1<z, Zero
—l<ct_<l<«t, if pdt= +p, uz+ uz20
-1
1
6 <z, if p(tydt= +p,, uz+ uz20
-1

Now S is easily evaluated by inserting the closed form for
S%,0 (see Sec. IV). With exactly the same six cases 1-6 con-
sidered before we find that .S corresponds precisely to the
column indicated by C in Table II, Sec. IV. Hence S%,,
(x, y,z,u) is given by

column C, ifxy+Xxy>0,

column B, ifxy+Xy<0.

In order to be able to compare this with the results given in
Table II, we interchange x <> z and y <> u. Then the cases 1-
6 are interchanged as follows: 1 <> 6,2 <> 5, and 3 < 4; ap-
parently this effectively comes down to interchanging the
columns B and C. Thus we find that S$%,, (x, y,z,u) is given
by

column B, ifzu+zu>0,

column C, ifzu+Zzu<0,

which is in complete agreement with Table II. Note, how-
ever, that the full result of Table II is not retrieved in this
way.
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Partial wave decomposition of the Glauber amplitude for the elastic
scattering of structureless charged particles by atomic hydrogen
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The partial wave amplitudes for the conventional Glauber approximation to the elastic scattering
of structureless charged particles by hydrogen atoms are evaluated in closed form. The
asymptotic behavior of these amplitudes in various limits is described. The large-r asymptotic
behavior of the Glauber effective interaction and the logarithmic divergence of the elastic Glauber
amplitude as @ — 0 are discussed. Some numerical results for these partial amplitudes are

presented.

I. INTRODUCTION

Applications of the Glauber approximation’ to atomic
collisions display two seemingly contradictory features.
Present evidence®” indicates that, on the whole, the Glauber
approximation to the scattering amplitude yields reasonably
reliable predictions of both differential and integrated cross
sections for inelastic scattering of charged particles by neu-
tral atoms at intermediate and high energies, i.e., at incident
particle speeds v; 2 2 a.u. On the other hand, it is now well
established that the Glauber approximation fails to predict
the measured absolute angular distributions for elastic scat-
tering of electrons by hydrogen®*” and helium>”® atoms.
The failure of the Glauber approximation is twofold for
these elastic collisions. At very small scattering angles 6 near
the forward direction the Glauber predictions diverge**-'° as
In(sin 8 /2), whereas reasonable extrapolations of the data*
to the forward direction appear finite. At intermediate and
wide scattering angles the Glauber approximation appears
to predict the shapes of the measured angular distributions,
but substantially underestimates the absolute data.* For ex-
ample, in e —-H(1s) elastic scattering at 140°, the Glauber
prediction is too low by ~40% for 100 eV incident electrons
and by nearly an order of magnitude for 30 eV incident elec-
trons. Although exchange effects are neglected throughout
in these Glauber applications, at intermediate incident elec-
tron energies, these effects, even when appreciable, are not
expected to be as large as the aforementioned differences
between theory and experiment. It is not surprising, how-
ever, that below ~ 100 eV the Glauber predictions are inac-
curate. It is also not surprising that the Glauber predictions
near 140° are inaccurate. The theory is not expected to be
valid for such energies and for such scattering angles.>*!!

In view of the truly remarkable success of the Glauber
approximation when applied to inelastic atomic collisions,
the apparent failure of the approximation in these applica-
tions to elastic scattering is not clearly understood in detail.
Nonetheless, it has been shown®®!° that the In(sin 8 /2) di-
vergence of the Glauber amplitude as 8 — 0 is traceable to
the long-range nature of the Coulomb force, together with
the use of the so-called closure approximation in the deriva-

® Deceased.
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tion? of the Glauber amplitude formula from the Lippmann—
Schwinger integral equation for composite systems. Thus
the failure of the Glauber approximation for small angle
elastic scatterings (at small momentum transfers) is appar-
ently understandable. On the other hand, Thomas'? has
shown that the failure of the Glauber approximation for
wide angle e ~-H elastic scattering at incident electron ener-
gies E; >50 eV is due to the normalization of those Glauber
predictions. In particular it is found that the observed* wide
angle e~ -H angular distributions are quite reliably consis-
tent with the predictions of point Coulomb scattering of the
incident electron by the nuclear proton, and that the
Glauber predictions, while reproducing the shape of point
Coulomb scattering at these angles, fail to reproduce the
normalization of purely point Coulomb scattering. Alterna-
tively, Ishihara and Chen® have argued that the failure of the
Glauber approximation at all scattering angles stems pri-
marily from an improper treatment of the small angular mo-
mentum contributions to the predicted elastic scattering am-
plitude.

The failure of the Glauber approximation to provide
reliable absolute estimates of elastic electron—neutral atom
scattering has prompted several attempts to improve upon
or provide alternatives to the Glauber approximation for
these collisions. These efforts include the two-potential ei-
konal approximation,® the eikonal-Born—series approxima-
tion,*’ the Glauber angle approximation,'? the eikonal-op-
tical model,'* and the modified Glauber approximation of
Gien,'s among others.>!®!° Rather than suggest another
such alternative to the conventional Glauber approxima-
tion, we examine the partial wave decomposition of the full
Glauber amplitude for the elastic scattering of structureless
charged particles by ground state hydrogen atoms. We are
able to obtain the corresponding Glauber partial wave am-
plitudes in closed form. This result not only reflects another?
of the remarkable analytic properties of the Glauber ampli-
tude, but more importantly should enable an assessment of
the elastic Glauber predictions in terms of general theoretic
considerations?® conventionally describing the properties of
the elastic scattering partial wave amplitudes and the corre-
sponding phase shifts. Moreover, we believe this to be one of
the few, if not the only, successful attempts to obtain analytic
closed form expressions for the partial wave amplitudes as-
sociated with an essentially high energy approximate to the
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full scattering amplitude, other than first Born. Indeed, in
atomic collision theory high-energy approximates are usual-
ly formulated explicitly to avoid the computation of the par-
tial wave amplitudes.

Although the analysis is necessarily detailed and some-
what complicated, we are able to show clearly from these
results that the failure of the full Glauber amplitude at small
scattering angles stems primarily from the unphysical behav-
ior of the Glauber partial wave amplitudes at /arge angular
momenta. This unphysical behavior is reflected in the large-r
asymptotic behavior of the effective potential scattering in-
teraction for the Glauber approximation; to leading order
the interaction is found to be purely absorptive and propor-
tional to r—>. The In(sin §/2) divergence of the elastic
Glauber amplitude occurs in the imaginary part of the am-
plitude. Since the observed e —H total scattering cross sec-
tions are finite, the Glauber approximation fails to satisfy the
optical theorem.> Nevertheless, we are able to clarify some-
what the sense in which the Glauber approximation approxi-
mately satisfies other constraints imposed by unitarity.

We stress that the analysis and discussion in this paper
are intended not to supplant, but rather to supplement, pres-
ently available analyses>>'>7!° of the deficiencies of the
Glauber approximation in charged particle-hydrogen atom
elastic scattering. However, we also believe the availability
of these Glauber partial wave elastic scattering amplitudes
may lead to further insight into the physical content and
deficiencies of the Glauber approximation as applied to
atomic collisions.

The contents of this paper now may be summarized as
follows. In Sec. II the Glauber partial wave amplitudes for
the elastic scattering of structureless charged particles by
hydrogen atoms is obtained in closed form. In Sec. III we
derive the large-r asymptotic behavior of the effective poten-
tial scattering interaction for the Glauber approximation
from the large-/ behavior of the partial amplitudes, while in
Sec. IV we show that the large-/ behavior of the partial am-
plitudes leads directly to the In(sin 8 /2) divergence as
0 — 0. In Sec. V we present the results for some numerical
computations of the partial wave amplitudes both as func-
tions of angular momentum / at fixed incident energy, and as
functions of energy at fixed /. We summarize our conclusions
in Sec. VI. For convenience, some of the detailed analysis
leading to the results obtained in Secs. III-V has been de-
ferred to the appendices. We obtain the asymptotic behavior
of the amplitude at large angular momenta in Appendix A,
while in Appendix B we obtain the asymptotic behavior of
the Glauber partial wave amplitudes in various limits, in-
cluding the limit as the incident energy approaches zero, all
at fixed angular momenta.

Il. REDUCTION OF THE GLAUBER ELASTIC PARTIAL
WAVE AMPLITUDE

The Glauber approximation to the scattering amplitude
for a direct collision (excluding exchange or rearrangement,
but including ionization ) of a structureless particle of charge
Z,e with a hydrogen atom which consequently undergoes a
transition from an initial state / to a final state fis given by ">°

954 J. Math. Phys., Vol. 27, No. 4, April 1986

iK, .
FC(i>fq) = ! fe"‘"’ ut(r)
T
x{eX®" _ 1} u,(r)d %b dr, (1a)
where the phase shift function y is given by
1 0
(b,r)=————f dz' V,(r'r). 1b
X o, " (r'r) (1b)

In Egs. (1a) and (1b) ¥;(r',r) is the interaction potential
seen by the incident particle with coordinate r’; r denotes the
coordinate of the initially bound electron relative to the tar-
get atom nucleus; and »; and u; specify the initial and final
state wave functions of the target atom. The momentum
transfer is given by q=K, - K, with
#K,, #AK, =p v;, pu v;, where v, and ¥, are the initial and
final relative velocities of the scattered particle in the center-
of-mass system, and y is the reduced mass of the incident
particle-hydrogen atom pair. It is by now well understood*>
that identifying Eqgs. (1a) and (1b) as the direct scattering
amplitude incorporates the subsumption that the z direction
in Eq. (1b) is to be taken along a direction ¥ perpendicular to
q, at each K; and K, and such that ¥ lies in the scattering
plane. Thus in Egs. (1), bis the projection of r onto the plane
perpendicular to v.

When spin-dependent interactions are neglected, V; in
Eq. (1b) is

Vi=Z.e¥/r —Z, /|t —r|,
and the Glauber amplitudes for direct elastic scattering and
excitation from the ground state H(1s) can be evaluated in
closed form.*!° In particular, the Glauber elastic scattering
amplitude is given by

1 d
—A* =1, (4, ,
4 ar 0 (4.0) A=2/a,

(2a)

FS(ls—>1s;q) = —i K,

where
I,(A,q) = —4ig|T(1 +ing)|2A ~2-¥ng=-2+2m
XLF (1 —in,1 —in;l; — A%/¢%), (2b)
with = — Z, e*/#i; and a, the Bohr radius; of course, for
elastic scattering K; = K, and ¢* = 2 K }(1 — cos ), where
@ is the center-of-mass scattering angle of the outgoing parti-
cle.

Since F°(1s — 1s;q) is azimuthally symmetric, F© can
be expanded in Legendre polynomials P, (cos ). Thus we
write
FS(1s— 1s;q)

= 3 Q@I+ 1) FE(s— 15, K,) Py(cos ) 3)
I=0

so that the partial wave amplitudes . { are given by
FS(1ls— 1K)

=%f sin 8d@ P,(cos ) F°(1s — ls;q). (4a)
0

Comparing Eq. (3) with the usual expansion®' of the scat-
tering amplitude in terms of the phase shift §,, we see that
1 1

Fr(ls— 15 K;) = oA (¥ — 1) =—¢"'sin 8,
L&, i

(4b)
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where &, is generally complex.

If we insert Eqgs. (2a) and (2b) into (4a), we obtain the
analogs of (2a) and (2b) for the partial wave amplitudes;
namely,

F(ls—> 1s5;K;)

, (5a)

A=2/a,

= —iK; —/13—f0(/1 K;)
4 aA

where

IO, K)=—2in A ~2~"|T(1 + in)|?

XJ sin 8 d6 P,(cos ) g —2+327
0

A%/q%).

The integration over the angle 8 in Eq. (5b) may be evaluat-
ed in closed form as follows. We first write the hypergeome-
tric function ,F, appearing in (5b) in terms of its Mellin—
Barnes integral representation®

1 (1 —im,1 —im; s —A%g%)
-1 1
[C(1 —in))? 2mi

I} 2 s
xf as LU=+ po s)( 2) (6)
C,

r+s)

which is valid provided |arg(4 2/¢*) | < 7. In Eq. (6) the con-
tour C, runs from — /e to + ic0 and is chosen so that the
poles of I'(1 — in + ) lie to the left of C, while the poles of
I' ( — 5) lie to the right. Since at the poles of I'(1 — in + s5)
we have Re(s)< — 1 and at the poles of I'( — s5) we have
Re(s) >0, we may explicitly choose C, to be the straight line
running from — € —iw to —e€+iocw, where O<e< 1.
When the contour C, is closed at infinity in the right half
plane, Eq. (6) yields the usual expansion®® of the hypergeo-
metric function in powers of ( — A 2/¢*), whereas, if C, is
closed at infinity in the left half plane, the double poles of
I’'(1 4+ s — in) lead to the usual well-defined analytic con-
tinuation** of the hypergeometric function in terms of
In(A 2/¢%) and powers of ( — g*/4 ).

Now, using Eq. (6) in (5b)
¢ =2 K?%(1 — cos 8), we obtain

XoFy (1 —im,1 — i1 — (5b)

together with

jG(/{. K ) = _2”7/1 —-2-=2n (ZKZ)"’_IM
r'a—im)

fSinedgpz(COSB)(l —cos §) "1+
g [T —in+5)]*

— €+ i
2m.f €e—ico r'{l+s)

X(ZKi)S(l—cose)_‘

On the contour, Re(s) <0; thus the singularity of
(1 —cos §) ~'~**"at @ = Oisintegrable and the # integra-
tion is well defined for all values of s on the contour. Conse-
quently the orders of integration may be interchanged so
that

r(—ys)
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JTP 4 K)

=_—i’7,1—2K.—2( Al )“"’F(1+i’7)
2mi " \2K? (1 —ip)

—€+iew . 2 2 s
—€—iow 2K3

r'(l+s)
Xf sin §d6 P,(cos 8) (1 —cos @) 15 (1)
0

But

fsinb"d&P,(cosG)(l —cos@)in—1-s

0

1
=f dx P(x) (1 —x)~1=s+m
-1

1
=(— 1)’J dx Py (x)(1 +x)7—1-*
-1

since P;( — x) = ( — 1)' P,(x). Moreover,”
1 o+1 2
dx(l+x)apv(x)= 2 [F(l+0’)] ,
1 IFc+v+2)T(14+0—v)

provided Re(o) > — 1. Therefore,

fsin&d@PI(COSO)(l —cos @)1~

0

__(=D'2" [Tl —9]* (8)
Tn—s+1+ )Tlin—s—1)
and
JP4LK)
— _h’/l-—ZKi-z( ﬂ,2 )—i'l F(l‘*‘lﬂ)
4K? L(1—in)
—€+iw . 2
X(— 1)/ f as IO+ 9V pe_y
7Tl — €— i r(1+s)

T(in —s)T(in —s) ( A? )‘ (9)
T(in—s+I14+DT(inp—s—H\4K2)"
Since / is an integer, we employ the relation®®

N D i L T X
T(l+a—m) I'(-a)

(10)
to infer

(g —s5)Tling—s)
F'ip—s—DTlp—s+1+1)
F'(l+1—ig+s) P(s—in—1)

Frl—in+s) TA—ig+s)’
and thereby obtain
FTAK)
2 — )
=m,1-2KFZ( : ) TICAM gy
4K? T(1—in)
L et P—in—DT(s—ip+1+1)
2 ) i T'(1+s)
r 12 s
XI'(—s) . 11
(3%) (tn

Equation (11) is subject to the restriction that |arg(4 %/
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4 K?)| <m,since |arg(4 */¢*)| <7 in Eq. (6). Although the
integrand of Eq. (11) has the proper form for identifying the
integral as a Mellin—Barnes representation of a hypergeome-
tric function, the integral cannot be equated with a hyper-
geometric function because not all of the poles of
I'(s — in — 1) lieto the left of C, (see Ref. 22). In particular,
there are / + 1 poles of I'(s — in —I) at values of s =1
+ip —j(j=0,1,..,1) totheright of C,. However, if we let
C, bea closed contour, which encircles only these/ + 1poles
of I' (s — in — I) in a counterclockwise sense, then

1 1 ds 1

2mi Je, 2mi

dse . (12)

C,+ G 2mi C,

The integration over the contour C, + C, now may be iden-
tified with a hypergeometric function, while the integral
over C, may be evaluated by applying the residue theorem.
In particular,?

1 g L= =DT(s—im+1+1)
2mi Je, v c, L(l+5s)

XT(—5) (A%/4K})°
=T(—1—ipT+1—in)

X F(—1—inl+1—ipl;—A%/4K?%).  (13)

Since the only poles of the integrand within the closed con-
tour C, are the aforementioned / + 1 simple poles of
(s — in —I) we find that

1 dsl‘(s—-i'r]—l)l"(s—in+l+1)

27i Jc, r'a+s)
XT(—s) (A%/4K}Y)°
1 i .

(-1 TQI+1-j) . .
= — L (—1—in+j)
& A TA+i+in—p 7

X (A4 K2)!+im—i, (14a)

Now let m = —, then

A (g v _(=D""TU+1+m)

27i Je, m=o TU+1—m)T(1+ip+m)
XT(—in—m) (AY74KH™+7 . (14b)

We can use Eq. (10) to simplify (14b) considerably. Noting
that

I"(I+1+m)=l"(l+1+m)(_l)ml“(m—l)
Cd+1-—m) rd+1 rc-»n
=(-D"I+1),(=D,
and
: m : I'(l+ip)
I'(—in— =(—D"T'(— _—
(—ig—m)=(—1"T(—in) T+ i+ )
= (—pn L
(14 m),

where (a),, is Pochhammer’s symbol,?” we obtain

A [ gL —ip=DlGs=in+I+1)
L(l+s)

27i Je,
Ay
4K?)
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X T'( —s)(

o A2 N T(—in)
=(-1)
4K?) T +in)
U+ 1D, (=D, (—}.2)"‘
[A+im),,]> \4K?)
Finally employing the results of Eqs. (12)-(14¢) in Eq.
(11) we find, after some further minor manipulations with
the gamma functions, that Eq. (11), and therefore Eq. (5b),
can be reduced to the comparatively simple form

ST, K,)

(14c)

>

m=0

=/{—2K,~_2[ d (1+1)m(—l)m( A2 )m

[A+m),]> \ 4kK?
A2 )_i" (l—iﬂ),
4K? (1 + in),

m=0

—|ra +i17)|2(

, , Az
XzF,(-m ~L—-im+1+4 11 —:7(—,2—)} (15

Recalling Eq. (5a), it is necessary to differentiate
J$(4, K;) once with respect to A in order to obtain the
elastic Glauber partial wave scattering amplitude; this is
most easily accomplished by noting that ifz = A4 >/4 K ? then
3 /04 = (A /2K ?)(3/3z) and that®®
% Filabie; —2)

= —(ab/c),Fi(a+ 1,b+ e+ 1; —2).

In terms of the parameter 2, we write

I —
y;}(/l,K,.)=iK,.—‘z—l—m{ (l+1),,,'( D
4 meo [(1+im),]?
; . (1 —in),
X (= 1)mzm+7 _ | T(1 + in)|? —— DL
T+,

X F(—im—L1+1—inpl; —z)] . (16)
After some elementary manipulations, we obtain from (5a)
and (16) the desired result that
FC(ls—> 15, K;)
1 [ ,
= — (141
2K, (1+m)
[ LD, (=D, (_ 1 )m
[(L+im),.]? K}a;

m=0

. (l—i"?)z 1 —in
— (1 2
T+, (K%aé)

. . 1
XzFl(“m—l’l +1—inl; _F)]

i o

4+, (=D, ( 1 )’"

T 2 2
K;a;

+i17[ i

m=0 (i), (1+in),,

1—i17),+1( 1 )l—m
(i), K?a:

K%laé)” '

an

— |0+ i) 2 (

XZFI(—I"l]—1+I,—i77+1+2;2; -
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The first Born elastic partial wave amplitudes may be
obtained in a fashion very similar to the foregoing reduction
of the elastic Glauber amplitude. One can easily show® that
the fandamental relation between the Born and correspond-
ing Glauber amplitude is

FR(i—fq)=in limo{(l/in) FS(i—fq)} (18a)
‘q—»

for fixed K, and each momentum transfer q. A similar rela-
tion holds for the corresponding partial wave elastic scatter-
ing amplitudes; at fixed X,

FPUs> 1K) =iy limo{(l/in) Fe(ls— 15K, }.
17—»

(18b)

Applying the relation (18b) to Eq. (17) is not straightfor-
ward, but rather, unduly tedious. However, Eq. (18b) can
be easily applied to Egs. (5) to give

FP(ls— 15 K,)

14
=K. n|= — IR, K, , 19
'ﬂ(ao) 4 A ( ) A=2/a, (192)
where
ALK = limo{(l/in) JSAK)}. (19b)
1]—-}

Applying the relation (19b) to Eq. (11) yields an inte-
gral representation for the generating function 7, which
may be evaluated easily after some minor manipulations. We
find that

FBAK,) = — 44 —4(

4K?)’ Ld+DHrU+1)
A2 rer+2)
X Py (4 LI+ 121+ 2, —4K3/2%).

(20)

The hypergeometric function in (20) is related to the Le-

gendre function Q,(z) of the second kind,”® with z

=14 A2/2 K2 Thus from (19a) and (20) it can be shown

that30

1 J

Frls—> 1K) = —— (K, K [7A° —
[ (1s s; K;) 2( 7) )
A=2/a,

=K, K ? [(1 +z(ll+ l)) Q:(2)

I+1

Q,H( )] (21b)

wherez=1+2/K?a?. It should be noted that Eq. (21b)
for # P can be shown to be equivalent to the seemingly differ-
ent expression given by Mott and Massey.>! Moreover,
since*®

I+1z2Q@) — U+ 1)@, (2) = —(Z-1D"Q}(D)

and*? Q,(z) >0, while Q}(z) <0 when z> 1, the term in
braces on the right side of (21b) is purely positive for
0<K, < o.Thus P> 0ifp>0 (i.e., Z, <0),and F P < 0if
7<0 (ie.,, Z, >0).
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ill. EFFECTIVE INTERACTION AT LARGE r

In this section we obtain the large-r effective interaction
of the Glauber approximation to the elastic scattering of
charged particles from hydrogen atoms. By the effective in-
teraction—which we denote by V _;—we generally mean
that interaction such that, at each incident energy, the elastic
scattering of the incident particle is described exactly by the
scattering solutions to the single particle Schrodinger equa-
tion with ¥ = V4. Of course, the exact V4 for the scattering
is Vg = Vo, where ¥V, is the exact optical potential. To
obtain the Glauber effective interaction, V', at large dis-
tances r, we exploit the relation between the large-/ partial
wave amplitudes for scattering by a potential and the first
Born approximate to those amplitudes.

As is well known, the Born partial wave amplitudes for
scattering by a potential V() may be written®

FB= — ﬁ;’f; L V(r) [ J1412 (Ko P))Prdr. (22)

If V(r) = Cr—*, then, provided 2/ + 2> Re(a — 1) >0,
Foo unC. (K, )“ 2 1 Fae-DHIr(+3—a/2)
ﬁzK,. 2 [F(a/2)]2F(l+§+a/2)
(23)
In particular, for a = 3 we obtain
FB= _uC/RII+1). (24)

For large /, we see from Eq. (22) that most of the contribu-
tion to the integral will come from large 7, ie., from the
asymptotic form of V(7). Hence, if V(r) ~C /P for large r,
then

FP~ —uC/#I3, (25)

for large /. Furthermore for such a potential, for large / the
exact partial wave amplitude ¥, and the Born partial wave
amplitude #} approach each other:

F i =F P~ —uC /I (26)

But in Appendix A we obtain the large-/ asymptotic behav-
ior of the Glauber partial wave amplitudes. From relation
(Al1), 7 behaves, to leading order, like

ay/1%].

The! dependence of Eq. (27) is identical to that of Eq. (26).
We may now ask for the asymptotic behavior of the effective
interaction V'3 (r) such that the exact potential scattering
solution to the Schrodmger equation yields the same large-/
partial wave amplitudes as obtained in the Glauber approxi-
mation. From our discussion above we see that V'S (7)
~C /P, where the constant C is obtained by equating the
right-hand sides of (26) and (27), so that

FP~— (I/iK) [(Km) (27)

# K, n'a? Z2*
C=—l ‘”a0=—i le a(z).
M v,
Thus, for large 7,
Z%%?
Vo —im e ; (28)
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Note that this is a purely absorptive, energy-dependent, ef-
fective interaction regardless of the charge of the incident
particle. Equation (28) is to be contrasted with the large-»
effective interaction corresponding to the amplitudes % } of
Eq. (21b), namely,

VeBﬂ'(r) ~Z,-62( 1/" + l/ao)e—zr/ao’

which is real, energy dependent, and exponentially decreas-
ing.

The exact large-r asymptotic interaction for the elastic
scattering of a charged particle by atomic hydrogen has been
examined classically®® and from the optical potential.>¢ To
leading order,

Vg (1)~ —Lay Z2e*/P, (29)

where ay; is the polarizability of the hydrogen atom target
and V4 is purely real. Comparing Eqs. (28) and (29), we
see that V'S, is unphysical on two accounts: it is absorptive,
and of order 3 at large 7. It is noteworthy that the domi-
nant unphysical behavior of ¥'S; as r — o can be traced to
the Glauber approximate to the second Born approxima-
tion. This is easily seen by expanding ¢ in Eq. (1a) in pow-
ers of 7 = — Z,e*/#w,; this corresponds to expanding F©
itself (or FC) in powers of 9. It is well known? that the
Glauber approximates to the nth term in the Born series for
the direct scattering amplitude is given at fixed K; by the
term proportional to 7" in the expansion of F¢ (or 7).
Since (27) is proportioned to 7 it follows that (28) is due to
the Glauber approximate to the second Born term in the
direct scattering amplitude. Similarly, it is known'*3¢ that
Eq. (29) stems from the second Born term in the direct Born
series for the optical potential ¥,,. Thus the failure of ¥ G
corresponds to the previously noted failure®® of the Glauber
approximate to F3 stemming from the use of closure in the
derivation” of the Glauber approximation. We show this ex-
plicitly in Sec. IV.

We may employ the arguments of this section and the
higher-order terms in / of Eq. (A11) to examine asymptotic
corrections to Eq. (28). In particular, we examine the cor-
rections stemming from the Glauber approximates to the
second and third Born terms in the direct amplitude Born
series. From the discussion of the previous paragraph and
(A1ll), we see that at large / the Glauber partial wave ap-
proximate F % to the second Born partial waves are, to or-
der (I +1)7%,

2
o [1 4 1 + 1

FC ~iK.n?
p T U T TR a1y

X[%K?a3+l]+...]. (30)
Again employing Eq. (23) to each order of / in (30) we find
that, at fixed K, the effective interaction ¥ $? in the Glauber
approximate F$ to the second Born term is asymptotically
”ﬁqi+ﬂ+&}

I
where a, and g, are purely real. Thus the ¥ S? does contain
terms of order r—*, but the coefficient is again imaginary.
Moreover, ¥'$? contains terms proportional to r—>. But it is
known'#3336 that the exact asymptotic V4 is

G2 :
Veﬂ' ~ —1

(31)

i
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Vg (r) ~ — %aﬂi,e +0(r=%), (32)
where the terms of order r—¢ in (32) stem, again, from the
second Born term in V. Thus, the unphysical nature of
V' is manifest not only in the imaginary coefficient, but
also in the presence of terms of order 7~ and r—>. We note
that the imaginary coefficient of ¥ &2 reflects the fact that the
Glauber approximate to the second Born term in the ampli-
tude is purely imaginary.”%”° We also point out that ¥_; (r)
generally must contain absorptive terms to represent the re-
moval of flux from the direct elastic channel. In e=—H(1s)
collisions, these absorptive terms must be present even below
the first excitation threshold to allow for exchange effects.
However, the absorptive terms in V; are generally expected
to be short range.

In a similar fashion, we also may discuss the effective
interaction due to the Glauber approximate to the third
Born term. From (A11) we find that to leading order in
large /, the Glauber partial wave approximate ¥ ¢, (propor-
tional to %*) to the third Born partial wave is

FE~3K b v {1/1* + 0(1/1%)}. (33)

Thus, the effective interaction V'S due to the Glauber ap-
proximate to the third Born term is asymptotically

yos 9 ZeN 1, ().

2 () r r”°

Although ¥ G has the desired property of being real, we see
from Eq. (32) that the exact large-r asymptotic form for
V.z (r) contains no r > dependence. Consequently, the con-
tinued use of F'§ to approximate the exact third Born term in
elastic scattering applications of the eikonal Born-series ap-
proximation®’ and in the modified Glauber approximation
of Gien' is probably somewhat suspect, particularly at
small scattering angles. Moreover, we suspect that the
Glauber approximate to each term in the exact e -H(1s)
elastic scattering Born series is correspondingly unphysical.

Finally we note that the amplitude formula of the two-
potential eikonal approximation of Ishihara and Chen’ can
be written as a finite sum of partial waves plus an integral of
the form of Eq. (1a) with a phase shift function y that differs
from (1b) at small values of b. At large values of b, however,
the two-potential eikonal y reduces to (1b). Recalling that
(la) can be derived by exploiting the correspondence
(I +1)/K, — b at fixed K; (see Ref. 2, Sec. 2.1.5; and Ref.
5), we see immediately that at large /, the behavior of ¢
and of the corresponding large-/ partial wave amplitudes of
the two-potential eikonal approximation is determined for
both approximations by the behavior of the integrand in
(la) at large b. Thus at large /, the two-potential eikonal
partial wave amplitudes behave like .# €. Consequently, the
conclusions of this section, stemming as they do from the
large-/ behavior of & 7, also apply to the two-potential ei-
konal approximation. We suspect these conclusions also ap-
ply to the Glauber-angle approximation as well. "

IV. THE GLAUBER AMPLITUDE NEAR THE FORWARD
DIRECTION

In this section we investigate the divergence of F ©(g) as
g — 0 at fixed K; (i.e., as the scattering angle @ approaches

(34)
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zero). Although the amplitude is known®5? to diverge lo-
garithmically, there seems to be some confusion regarding
the source of this divergence.

It is well known®” that potentials which fall off as 7> at
large r lead to divergent elastic scattering amplitudes near
the forward direction. As was shown in Sec. III, the asymp-
totic form of the Glauber amplitude F {* for large / implies
an effective potential proportional to 2 for large . Conse-
quently it is this large-» dependence of the effective potential
or, equivalently, the large-/ dependence of the partial wave
amplitude that leads to the divergence of the full scattering
amplitude F as 6 — 0.

To see this in more detail, it is instructive to investigate
the scattering amplitude F; near the forward direction both
by means of Eq. (2a) and by means of the sum given by Eq.
(3) of the partial wave amplitudes % 7. By explicitly per-
forming the indicated differentiation in Eq. (2a), we may
express the full elastic scattering amplitude as

FO(q)=2K;n|IT(1 +in)|’qg~2& ~"
X [(1+i),Fi (1 —in,1 —in;1; — &)
+ (1 — i) F(2—in2 —in2; — £)],
(35)

whereé =4/g%a} = [K,a,5in(6/2)] 2. As — 0, wehave
£ — . Now as £ — o we have,? for fixed 7 (i.e., fixed
K),

(1 —ipg 1l —ig1; — £)

1 —1+in

"I —imT(in)

X[In&+2¢(1) —¢(1 —in) —¢(in)], (36a)
Fi(2—in2 —in2; —§)

-~ 1 —2+1iq

' —inI3n)

X[In& +2¢(1) — (2 —in) —¥lin)], (36b)

where®® ¥(z) =d[In '(z)]/dz.
Using these asymptotic results in Eq. (35), we obtain,
for fixed K and 7,

FO(q)~iK,a} 7*[ —21In(sin 6 /2) — 2 In(K,a,)
— 4+ 2¢(1) — (1 —in) — Yim) ]

~i K;ay 7*[ —21In(sin 6 /2) — 2 In(K,a,)
—} =2y —2Re[y(1 —im]+ Gm~'],

(38)

where (38) is obtained from (37) via the properties of the 3
functions.*® The logarithmic divergence of F€ as 0 — 0 is
made explicit in either (37) or (38).

Let us next investigate F © in terms of the sum over par-
tial waves. From Eq. (A11), for large /and ! + 1>K;a,

37

FPK)~iKa@ U+ D721+ 0+ D7 =F7.
(39)
We may express the full Glauber amplitude as
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& 241
FG(Q)—‘Kao” z (1+1)2[

1 1]P,(cose)
L-

+ 3 2+ DP(cosO)[ FF — FT]
I1=0

+ 3 @+ D[FF—FF] P(cosh).

l=L+1

(40)

By choosing L appropriately we may make the last sum in
Eq. (40) as small in magnitude as desired. Consequently we
shall omit that sum hereafter. Now

2l+1(1+ 1)= 2 + 1 2+1
(I+1)? I+1/ I+1 Id+1) (d+10)3%°
AlSO”
d 1+sin8/2
P 9) =1 (———) 41
Z' H(cos6) =In{ =2 072 “h
and
el 1 1—cosé®
P(cos0)=1—21n(1+ —_—
,;1(1+1) ! 2
(42)
Therefore

i 21+1( 1 )P P
Z:(I+1)2 +l+1 1(cos 6)

=21n(1—fM) —2In(1 +sin6/2) + 1
sin 6 /2

= 2[+1
1;1 I(+1)

Consequently, by choosing L appropriately we find that, to
any desired accuracy,

FS(q) = —2iK, a} n*In(sin 6 /2)
+ F§—FS+iK, ai

P (cos 6). (43)

L
+3 @A+ FP-FF

I=1

. 1
—IK,- a(z) 7721(1—*_—1)3] P,(COS 0) (44)
As @ — 0 we obtain
FS(g)~ —2iK, a2 7*In(sin 6 /2) (45)

in agreement with Eq. (38). The logarithmic divergence
arises from the sum (41) and in particular stems from the
large-/ behavior of the summand, i.e., from the large-/ behav-
ior of the partial wave amplitude. We also point out that
(45) holds at small 8 even when v, — 0 (i.e., K; — Oat fixed
M), despite the apparent In(X;) divergence in (37) and
(38). This can be seen by applying to Eq. (35) the methods
of Appendix B, wherein the v; — 0 behavior of # 7 is ob-
tained.

As we remarked in Sec. III, the large-/ asymptotic be-
havior of # ¢ is due to the Glauber approximate to the 2nd
term in the Born series for the direct scattering amplitude.
Thus the results of this section are consistent with, and serve
to clarify, previous discussions*5? of the divergence of F ¢ in
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the forward direction. Moreover, in Sec. III we found that
the partial wave amplitudes of the two-potential eikonal ap-
proximation behave at large / like # ¢. Since the large-/ be-
havior of # € determines the In(sin 8 /2) divergence of F €,
the full two-potential eikonal amplitude must similarly di-
verge as 8 — 0.

V. SOME NUMERICAL RESULTS FOR THE PARTIAL
WAVE AMPLITUDES

In this section we present some results of numerical
computation of the e —H(1s) elastic Glauber partial wave
amplitudes ¥ 7 (K, ), both as a function of / + 1 for fixed X
and as a function of X for fixed /.

In Fig. 1 we show K; # $(K,) as a function of / + 1 for
K, ay=1and for K; a, = 2 and 1</ + 1<20. The solid and
broken curves connect the discrete points (dots), serving
merely as a guide to the eye. For the case K| ¢, =1, the
asymptotic expansion (All) is expected to be valid for
! + 1»}and I»1. We see from the figure that the asymptotic
behavior (straight line portion) occurs for/ + 12 5, which
isconsistent with/ + 1»4and /> 1. For K, a, = 2, the condi-
tions for the validity of asymptotic expansion are / + 1»2
and /> 1. From Fig. 1 we see that the asymptotic behavior
occurs for / 4+ 12 10, which is consistent with / 4 1»2 and
I> 1. This figure also reveals that the imaginary part of ¥ {
behaves asymptotically like (/ + 1) ~2 whereas the real part
behaves like (/ + 1) ™% as can be inferred also from Eq.
(All).

In Fig. 2 we show K; ¥ ¥(K;) as a function of / + 1 for
K, a,=5 and for K, a; =10 and 1</ + 1<20. For / + 1

=20, (! +1)/K; a, is 4 and 2 for the two cases shown.

rrry
IO";
- '\
i |
I !
102 |
E 5
o 1 :
< LK = 0.5 a.u. i
10" | T
3 3} P
- 1 -
i —Im (K;F %) 1 ]
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-4l : 1
107k ' g
- 3 p
|O‘5 L |lll|l|4‘141 s aaal
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(1+1)
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FIG. 1. Real and imaginary parts of Glauber approximation partial wave
amplitudes for elastic scattering of electrons by ground state hydrogen, for
incident momenta K, a, = } and 2. The curves connecting the dots serve

merely to guide the eye.
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FIG. 2. Same as Fig. 1 for X; a, = 5 and 10.

These values are not large enough for the asymptotic expan-
sion to be valid, as can be readily seen from the figure.

In Fig. 3 we present K, #$(K;) for/=0and /= 1in
Argand diagrams. For / = 0 the threshold value of K; ¥ C is
0.474i and for / = 1 it is 0.246i. The resu